

A96G166/A96A166/A96S166 User's Manual

16 MHz 8-bit MCU, 16 KB Flash Memory, 12-bit ADC, 3 Timers, USART, I2C, High Current Port

UM Rev. 1.19

Introduction

This user's manual targets application developers who use A96G166/A96A166/A96S166 for their specific needs. It provides complete information of how to use A96G166/A96A166/A96S166 device. Standard functions and blocks including corresponding register information of A96G166/A96A166/A96S166 are introduced in each chapter, while instruction set is in Appendix.

A96G166/A96A166/A96S166 is based on M8051 core and provides standard features of 8051 such as 8-bit ALU, PC, 8-bit registers, timers and counters, serial data communication, PSW, DPTR, SP, 8-bit data bus and 2x16-bit address bus, and 8/11/16-bit operations.

In addition, this device incorporates followings to offer highly flexible and cost-effective solutions: 16Kbytes of FLASH, 256bytes of IRAM, 512bytes of XRAM, general purpose I/O, basic interval timer, watchdog timer, 8/16-bit timer/counter, 16-bit PPG output, 8-bit PWM output, 16-bit PWM output, watch timer, buzzer driving port, USART, I2C, CRC, 12-bit A/D converter, on-chip POR, LVR, LVI, on-chip oscillator and clock circuitry.

The field-proven best sellers, the A96G166/A96A166/A96S166, have been sold more than 3 billion units up to now, delivering rich features such as outstanding noise immunity, code optimization, cost efficiency, and more.

Reference document

- A96G166/A96A166/A96S166 programming tools and manuals released by ABOV: They are available at ABOV website, <u>www.abovsemi.com</u>.
- SDK-51 User's guide (System Design Kit) released by Intel in 1982: It contains all of components of a single-board computer based on Intel's 8051 single-chip microcomputer
- Information on Mentor Graphics 8051 microcontroller: The technical document is provided at Mentor® website, https://www.mentor.com/products/ip/peripheral/microcontroller/

Contents

Intro	ductio	n		1			
Refe	erence	docume	ent	1			
1.	Desc	ription		12			
	1.1	Device	e overview	12			
	1.2	1.2 A96G166/A96A166/A96S166 block diagram					
2.	Pinouts and pin description						
	2.1						
	2.2	Pin de	escription	20			
3.	Port	structure	9S	24			
4.	Central processing unit (CPU)						
	4.1	Architecture and registers					
	4.2	Addressing					
	4.3		ction set				
5.			anization				
	5.1		am memory				
	5.2		memory				
	5.3		nal data memory				
	5.4		nap				
		5.4.1	SFR map summary				
		5.4.2	SFR map				
		5.4.3	Compiler compatible SFR				
6.	I/O ports						
	6.1		egister				
		6.1.1	Data register (Px)				
		6.1.2	Direction register (PxIO)				
		6.1.3	Pull-up register selection register (PxPU)				
		6.1.4	Open-drain Selection Register (PxOD)				
		6.1.5	De-bounce Enable Register (PxDB)				
		6.1.6	Port Function Selection Register (PxFSR)				
	0.0	6.1.7	Register Map				
	6.2	-	rt				
		6.2.1	P0 port description				
	0.0	6.2.2	Register description for P0				
	6.3	•	rt				
		6.3.1	P1 port description				
	6.4	6.3.2	Register description for P1				
	6.4	6.4.1	rt				
		6.4.2	P2 port descriptionRegister description for P2				
	6 5		rt				
	6.5	6.5.1	P3 port description				
		6.5.2	Register description for P3				
7.	Interi		•				
١.	Interrupt controller						
	7.1	·					
	7.2	· · · · · · · · · · · · · · · · · · ·					
	7.3 7.4	·					
	7.5		ive timing after controlling interrupt bit				
	7.5 Enective tining arter controlling interrupt bit						

	7.6	Multi-interrupt	.68
	7.7	Interrupt enable accept timing	69
	7.8	Interrupt service routine address	69
	7.9	Saving/restore general purpose registers	69
	7.10	Interrupt timing	.70
	7.11	Interrupt register overview	.71
		7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3)	.71
		7.11.2 Interrupt Priority Register (IP and IP1)	.71
		7.11.3 External Interrupt Flag Register (EIFLAG0 and EIFLAG1)	.71
		7.11.4 External Interrupt Polarity Register (EIPOL0L, EIPOL0H, EIPOL1 and EIPOL2)	71
		7.11.5 Register map	.71
		7.11.6 Interrupt register description	.72
8.	Clock	generator	.78
	8.1	Clock generator block diagram	.79
	8.2	Register map	. 79
	8.3	Register description	.80
9.	Basic	Interval Timer	.82
	9.1	BIT block diagram	.82
	9.2	BIT register map	.83
	9.3	BIT register description	.83
10.	Watch	ndog timer	.85
	10.1	Setting window open period of watchdog timer	.86
	10.2	WDT block diagram	.87
	10.3	Register map	.88
	10.4	Register description	.88
11.	Watch	n timer	.91
	11.1	WT block diagram	.91
	11.2	Register map	.92
	11.3	Watch timer register description	.92
12.	Timer	0/1/2	.94
	12.1	Timer 0	.94
		12.1.1 8-bit timer/counter mode	.94
		12.1.2 8-bit PWM mode	.96
		12.1.3 8-bit capture mode	.98
		12.1.4 Timer 0 block diagram	100
		12.1.5 Register map1	100
		12.1.6 Register description	101
	12.2	Timer 11	103
		12.2.1 16-bit timer/counter mode	104
		12.2.2 16-bit capture mode	106
		12.2.3 16-bit PPG mode	
		12.2.4 16-bit complementary PWM mode (dead time)	
		12.2.5 16-bit timer 1 block diagram	
		12.2.6 Register map	113
		12.2.7 Register description	
	12.3	Timer 2	
	-	12.3.1 16-bit timer/counter mode	
		12.3.2 16-bit capture mode	
		12.3.3 16-bit PPG mode	
		12.3.4 16-bit timer 2 block diagram	
		3	

Contents

		12.3.5 Register map	124
		12.3.6 Register description	125
13.	Buzze	er driver	128
	13.1	Buzzer driver block diagram	128
	13.2	Register map	129
	13.3	Register description	129
14.	12-bit	ADC	130
	14.1	Conversion timing	130
	14.2	Block diagram	
	14.3	ADC operation	
	14.4	Register map	
	14.5	Register description	133
15.			136
	15.1	Block Diagram	
	15.2	Bit transfer	
	15.3	Start/ repeated start/ stop	
	15.4	Data transfer	
	15.5	Acknowledge	
	15.6	Synchronization/ arbitration	
	15.7	Block operation	
		15.7.1 I2C block initialization process	
		15.7.2 I2C interrupt service	
		15.7.3 Master transmitter	
		15.7.4 Slave receiver	
	15.8	Register Map	
	15.9	I2C register description	
16.		RT 0/1	
	16.1	Block diagram	
	16.2	Clock generation	
	16.3	External clock (XCK)	
	16.4	Synchronous mode operation	
	16.5	Data format	
	16.6	Parity bit	
	16.7	USART transmitter	
		16.7.1 Sending Tx data	
		16.7.2 Transmitter flag and interrupt	
		16.7.3 Parity generator	
	40.0	16.7.4 Disabling transmitter	
	16.8	USART receiver	
		16.8.1 Receiving Rx data	
		16.8.2 Receiver flag and interrupt	
		16.8.3 Parity checker	
		16.8.4 Disabling receiver	
	40.0	16.8.5 Asynchronous data reception	
	16.9	SPI mode	
	10.40	16.9.1 SPI clock formats and timing	
		Receiver time out (RTO)	
		Register map	
		Register description	
	10.13	Baud rate settings (example)	173

	16.14	0% error baud rate	174
17.	CRC.		175
	17.1	Block Diagram	175
	17.2	Register map	176
	17.3	Register description	177
	17.4	Register Polynomial	180
18.	Powe	r down operation	181
	18.1	Peripheral operation in IDLE/ STOP mode	181
	18.2	IDLE mode	182
	18.3	STOP mode	183
	18.4	Released operation of STOP mode	184
	18.5	Register map	185
	18.6	Register description	185
19.	Reset		186
	19.1	Reset block diagram	186
	19.2	Power on reset	
	19.3	External resetb input	
	19.4	Low voltage reset process	
	19.5	LVI block diagram	
	19.6	Register Map	
	19.7	Reset operation register description	
20.		pry programming	
	20.1	Flash control and status registers	
		20.1.1 Register map	
		20.1.2 Register description	
	20.2	Memory map	
	20.2	20.2.1 Flash memory map	
	20.3	Serial in-system program mode	
	20.0	20.3.1 Flash operation	
	20.4	Mode entrance method of ISP mode	
	20.4	20.4.1 Mode entrance method for ISP	
	20.5	Security	
	20.6	Configure option	
	20.7	Password function	
21.		lopment tools	
۷۱.	21.1	Compiler	
	21.1	Core and debug tool information	
	21.2	21.2.1 Feature of 94/96/97 series core	
		21.2.2 OCD type of 94/96/97 series core	
		21.2.3 Interrupt priority of 94/96/97 series core	
		21.2.4 Extended stack pointer of 94/96/97 series core	
	24.2	·	
	21.3	OCD (On-chip debugger) emulator and debugger	
		21.3.1 On-chip debug system	
	04.4	21.3.2 Two-wire communication protocol	
	21.4	Programmers	
		21.4.1 E-PGM+	
		21.4.2 OCD emulator	
	04 -	21.4.3 Gang programmer	
	21.5	Flash programming	
		21.5.1 On-board programming	232

21.6	Connection of transmission	233
21.7	Circuit design guide	234
	ction table	
Revision hi	story	242

List of tables

Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts	12
Table 2. Normal Pin Description	20
Table 3. SFR Map Summary	35
Table 4. XSFR Map Summary	36
Table 5. SFR Map	37
Table 6. XSFR Map	41
Table 7. Port Register Map	46
Table 8. Interrupt Vector Address Table	65
Table 9. Interrupt Register Map	71
Table 10. Clock Generator Register Map	79
Table 11. Basic Interval Timer Register Map	83
Table 12. Window Open Period Settings	87
Table 13. Watchdog Timer Register Map	88
Table 14. Watch Timer Register Map	92
Table 15. Timer 0 Operating Mode	94
Table 16. Timer 0 Register Map	100
Table 17. TIMER 1 Operating Modes	103
Table 18. TIMER 1 Register Map	113
Table 19. TIMER 2 Operating Modes	117
Table 20. TIMER 2 Register Map	124
Table 21. Buzzer Frequency at 8 MHz	
Table 22. Buzzer Driver Register Map	129
Table 23. ADC Register Map	133
Table 24. I2C Register Map	146
Table 25. Equations for Calculating Baud Rate Register Settings	153
Table 26. CPOL Functionality	161
Table 27. Example Condition of RTO	164
Table 28. USART Register Map	
Table 29. Examples of UBAUD Settings for Commonly Used Oscillator Frequencies	
Table 30. CRC Mode	175
Table 31. CRC Register Map	176
Table 32. Peripheral Operation Status during Power-down Mode	
Table 33. Power-down Operation Register Map	
Table 34. Hardware Setting Values in Reset State	186
Table 35. Boot Process Description	
Table 36. Reset Operation Register Map	193
Table 37. Flash Control and Status Register Map	196
Table 38. Program and Erase Time	
Table 39. Operation Mode	
Table 40. Mode Entrance Method for ISP	211
Table 41. Security Policy using Lock Bits	211
Table 42. Security Mode using Password Lock Bit	
Table 43. Core and Debug Information	216
Table 44. Core and Debug Interface by Series	
Table 45. Feature Comparison Chart By Series and Cores	
Table 46. OCD Type of Each Series	
Table 47. Comparison of OCD 1 and OCD 2	
Table 48. Interrupt Priorities in Groups and Levels	220

List of tables

Table 49. Debug Feature by Series	222
Table 50. OCD 1 and OCD 2 Pin Description	223
Table 51. OCD Features	224
Table 52. Pins for Flash Programming	232
Table 53 Instruction Table	236

List of figures

Figure 1. A96G166/A96A166/A96S166 Block Diagram	14
Figure 2. A96G166 16SOPN Pin Assignment	
Figure 3. A96G166 20TSSOP/20SOP Pin Assignment	15
Figure 4. A96A166 20SOP Pin Assignment	16
Figure 5. A96S166 20TSSOP Pin Assignment	16
Figure 6. A96G166 24 QFN Pin Assignment	17
Figure 7. A96G166 28TSSOP / 28 SOP Pin Assignment	18
Figure 8. A96G166 32 LQFP Pin Assignment	19
Figure 9. General Purpose I/O Port	24
Figure 10. External Interrupt I/O Port	25
Figure 11. M8051EW Architecture	26
Figure 12. Program Memory Map	32
Figure 13. Data Memory Map	33
Figure 14. Lower 128-bytes of RAM	33
Figure 15. XDATA Memory Area	34
Figure 16. Interrupt Group Priority Level	62
Figure 17. External Interrupt Description	63
Figure 18. Interrupt Controller Block Diagram	64
Figure 19. Interrupt Sequence Flow	66
Figure 20. Case A: Effective Timing of Interrupt Enable Register	67
Figure 21. Case B: Effective Timing of Interrupt Flag Register	67
Figure 22. Effective Timing of Multi-Interrupt	68
Figure 23. Interrupt Response Timing Diagram	69
Figure 24. Correspondence between Vector Table Address and Entry Address of ISR	69
Figure 25. Saving/Restore Process Diagram and Sample Source	69
Figure 26. Timing Chart of Interrupt Acceptance and Interrupt Return Instruction	70
Figure 27. Clock Generator Block Diagram	79
Figure 28. Basic Interval Timer Block Diagram	82
Figure 29. Timing Diagram of Watchdog Timer Interrupt	86
Figure 30. Block Diagram of Watchdog Timer	
Figure 31. Watch Timer Block Diagram	91
Figure 32. 8-bit Timer/Counter Mode for Timer 0	95
Figure 33. 8-bit Timer/Counter 0 Example	
Figure 34. 8-bit PWM Mode for Timer 0	
Figure 35. PWM Output Waveforms in PWM Mode for Timer 0	
Figure 36. 8-bit Capture Mode for Timer 0	
Figure 37. Input Capture Mode Operation for Timer 0	
Figure 38. Express Timer Overflow in Capture Mode	
Figure 39. 8-bit Timer 0 Block Diagram	
Figure 40. 16-bit Timer/Counter Mode of Timer 1	
Figure 41. 16-bit Timer/Counter Mode Operation Example	
Figure 42. 16-bit Capture Mode of Timer 1	
Figure 43. 16-bit Capture Mode Operation Example	
Figure 44. Express Timer Overflow 16-bit Capture Mode	
Figure 45. 16-bit PPG Mode of Timer 1	
Figure 46. 16-bit PPG Mode Operation Example	
Figure 47. 16-bit Complementary PWM Mode for Timer 1	
Figure 48. 16-bit Complementary PWM Mode Timing Chart for Timer 1	111

Figure 49.	16-bit Timer 1 Block Diagram	112
Figure 50.	16-bit Timer/Counter Mode of Timer 2	118
Figure 51.	16-bit Timer/Counter Mode Operation Example	119
Figure 52.	16-bit Capture Mode of Timer 2	120
Figure 53.	16-bit Capture Mode Operation Example	121
Figure 54.	Express Timer Overflow in Capture Mode	121
Figure 55.	16-bit PPG Mode of Timer 2	122
Figure 56.	16-bit PPG Mode Operation Example	123
Figure 57.	16-bit Timer 2 Block Diagram	124
Figure 58.	Buzzer Driver Block Diagram	128
Figure 59.	12-bit ADC Block Diagram	131
Figure 60.	A/D Analog Input Pin with a Capacitor	131
Figure 61.	Control Registers and Align Bits	132
Figure 62.	ADC Operation Flow Sequence	132
Figure 63.	Block Diagram of I2C	136
Figure 64.	Bit Transfer on the I2C Bus	137
Figure 65.	START and STOP Condition	137
Figure 66.	Data Transfer on the I2C Bus	138
Figure 67.	Acknowledge on the I2C Bus	139
Figure 68.	Clock Synchronization during Arbitration Procedure	140
	Arbitration Procedure of Two Masters	
Figure 70.	I2C SCL Max Clock, SCL, SDA Settings	142
Figure 71.	USARTn Block Diagram (n=0, 1)	152
Figure 72.	Block Diagram of Clock Generation	153
Figure 73.	Synchronous Mode XCKn Timing (n=0, 1)	154
Figure 74.	A Frame Format	155
Figure 75.	Start Bit Sampling	159
Figure 76.	Sampling of Data and Parity Bit	160
Figure 77.	Stop Bit Sampling and Next Start Bit Sampling	160
Figure 78.	SPI Clock Formats when UCPHA = 0	162
Figure 79.	SPI Clock Formats when UCPHA = 1	163
Figure 80.	Example for RTO in USART	164
Figure 81.	0% Error Baud Rate Block Diagram	174
Figure 82.	CRC Block Diagram	175
Figure 83.	IDLE Mode Release Timing by an External Interrupt	182
Figure 84.	STOP Mode Release Timing by External Interrupt	183
Figure 85.	STOP Mode Release Flow	184
Figure 86.	Reset Block Diagram	186
Figure 87.	Fast VDD Rising Time	187
Figure 88.	Internal RESET Release Timing On Power-up	187
Figure 89.	Configuration Timing when Power-on	188
Figure 90.	Boot Process Waveform	188
Figure 91.	Timing Diagram after A RESET	190
•	Example Waveforms on an Oscillator	
Figure 93.	Block Diagram of LVR	191
Figure 94.	Internal Reset at Power Fail Situation	191
Figure 95.	Configuration Timing When LVR RESET	192
Figure 96.	LVI Block Diagram	192
Figure 97.	Read Device Internal Checksum (Full Size)	201
Figure 98	Read Device Internal Checksum (User Define Size)	202

Figure 99. Flash Memory Map	204
Figure 100. Address Configuration of Flash Memory	
Figure 101. Sequence of Page Program and Erase of Flash Memory	205
Figure 102. Sequence of Bulk Erase of Flash Memory	206
Figure 103. ISP Mode	211
Figure 104. Using OCD/E-PGM+/E-GANG4/E-GANG6	215
Figure 105. Configuration of the Extended Stack Pointer	221
Figure 106. OCD 1 and OCD 2 Connector Pin Diagram	223
Figure 107. Debugger (OCD1/OCD2) and Pinouts	224
Figure 108. On-chip Debugging System in Block Diagram	225
Figure 109. Timing Diagram of Debug Mode Entry	225
Figure 110. 10-bit Transmission Packet	226
Figure 111. Data Transfer on OCD	227
Figure 112. Bit Transfer on Serial Bus	228
Figure 113. Start and Stop Condition	228
Figure 114. Acknowledge on Serial Bus	229
Figure 115. Clock Synchronization during Wait Procedure	229
Figure 116. E-PGM+ (Single Writer) and Pinouts	230
Figure 117. E-Gang4 and E-Gang6 (for Mass Production)	
Figure 118. Connection of Transmission	233
Figure 119. PCB Design Guide for On-Board Programming	235

1. Description

A96G166/A96A166/A96S166 is an advanced CMOS 8-bit microcontroller with 16Kbytes of FLASH. This is a powerful microcontroller which provides a highly flexible and cost-effective solution to many embedded control applications.

1.1 Device overview

In this section, features of A96G166/A96A166/A96S166 and peripheral counts are introduced.

Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts

Pe	ripherals	Description
	CPU	8-bit CISC core (M8051, 2 clocks per cycle)
Core	Interrupt	Up to 21 peripheral interrupts supported. • EINT0 to 4, EINT5, EINT6, EINT7 to A, EINT10, EINT11, EINT12 (7) • Timer (0/1/2) (3) • WDT (1) • BIT (1) • WT (1) • USART *Rx/Tx (4) • I2C (1) • ADC (1) • CRC (1) • LVI (1)
Memory	ROM (FLASH) capacity	16 Kbytes FLASH with self-read and write capability In-system programming (ISP) Endurance: 30,000 times 256Bytes
	XRAM	512Bytes
Programmable pulse generation		Pulse generation (by T0/T1/T2) 16-bit Complement PWM (Dead time control)
Buzzer		8-bit × 1-ch
Minimum instruction execution time		125ns (@ 16 MHz main clock) 61us (@ 32.768 kHz sub clock)
Power down mode		STOP mode IDLE mode

Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts (continued)

Peripherals		/A96S166 Device Features and Peripheral Counts (continued) Description
		Normal I/O: Max 30 ports
General Purpose I/O (GPIO)		High sink current port: LED 8 x COM
	Power on reset	Reset release level: 1.32V
Reset	Low voltage reset	16 levels detect
		• 1.61/1.68/1.77/1.88/2.00/2.13/2.28/2.46/2.68/2.81/3.06/3.21/ 3.56/3.73/3.91/4.25V
		13 levels detect
Low voltage	indicator	• 1.88/2.00/2.13/2.28/2.46/2.68/2.81/3.06/3.21/3.56/3.73/ 3.91/4.25V
Watch Time	er (WT)	3.91ms/0.25s/0.5s/1s/1min interval at 32.768 kHz
		Basic interval timer (BIT) 8-bit x 1-ch.
Timer/co	unter	Watchdog timer (WDT) 8-bit x 1-ch.
		• 8-bit x 1-ch (T0), 16-bit x 2-ch (T1/T2)
	LICADT	8-bit USART x 2-ch or 8-bit SPI x 2-ch
Communication	USART (UART+SPI)	Receiver timer out (RTO)
function		0% error baud rate
	I2C	8-bit I2C x 1-ch
12-bit A/D co	onverter	15 input channels
Oscillator	· tvne	4 MHz to 12 MHz crystal or ceramic for main clock
Committee	1,700	32.768 kHz Crystal for sub clock
		• HSI 32 MHz ±1.5% (T _A = 0°C to +50°C)
		• HSI 32 MHz ±2.0% (T _A = -10°C to +70°C)
Internal RC o	necillator	• HSI 32 MHz ±2.5% (T _A = -40°C to +85°C)
internal NO (oscillatoi	• HSI 32 MHz ±5.0% (T _A = -40°C to +105°C)
		• LSI 128 kHz ±20% (T _A = -40°C to +85°C)
		◆ LSI 128 kHz ±30% (T _A = -40°C to +105°C)
		• 1.8 V to 5.5 V @ 32.768 kHz with crystal
Operating voltage	and fraguancy	2.2 V to 5.5 V @ 4 MHz to 10 MHz with crystal
Operating voltage	and nequency	2.4 V to 5.5 V @ 4 MHz to 12 MHz with crystal
		• 1.8 V to 5.5 V @ 0.5 MHz to 16.0 MHz with internal RC
Operating ten	nperature	-40°C to +85°C, -40°C to +105°C
		Pb-free packages
Dools	go.	• 32 LQFP, 28 SOP/ TSSOP, 24 QFN
Packa	y c	• 20 TSSOP/SOP
		• 16 SOPN

1.2 A96G166/A96A166/A96S166 block diagram

In this section, A96G166/A96A166/A96S166 device with peripherals are described in a block diagram.

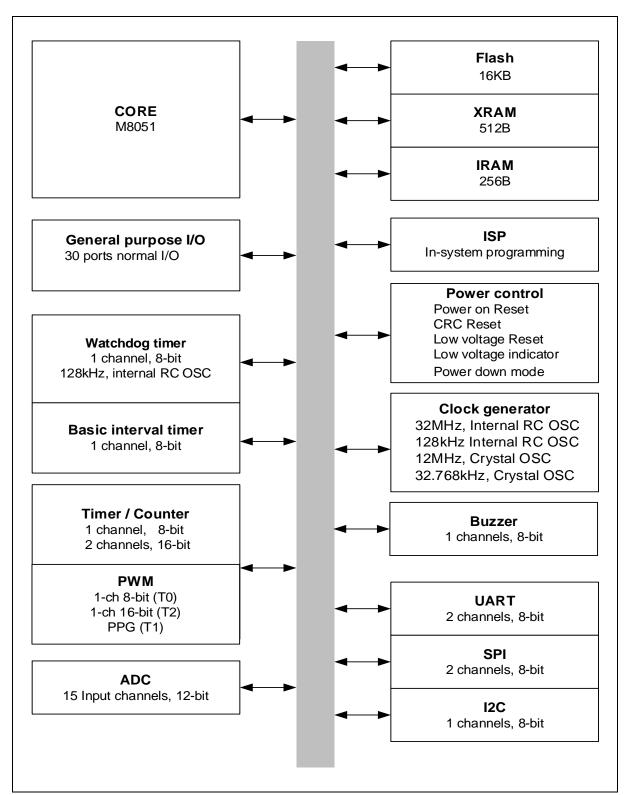


Figure 1. A96G166/A96A166/A96S166 Block Diagram

2. Pinouts and pin description

In this chapter, A96G166/A96A166/A96S166 device pinouts and pin descriptions are introduced.

2.1 Pinouts

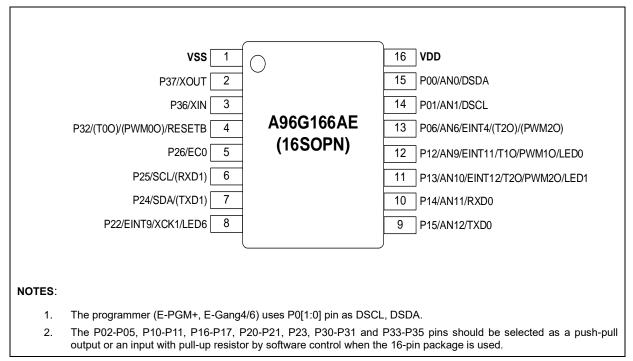


Figure 2. A96G166 16SOPN Pin Assignment

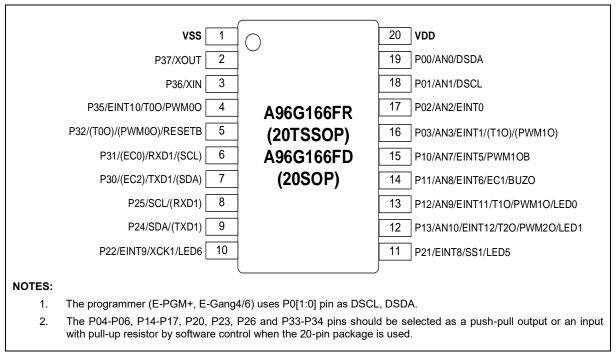


Figure 3. A96G166 20TSSOP/20SOP Pin Assignment

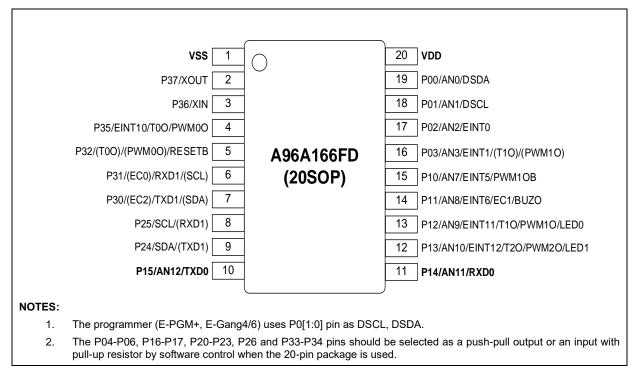


Figure 4. A96A166 20SOP Pin Assignment

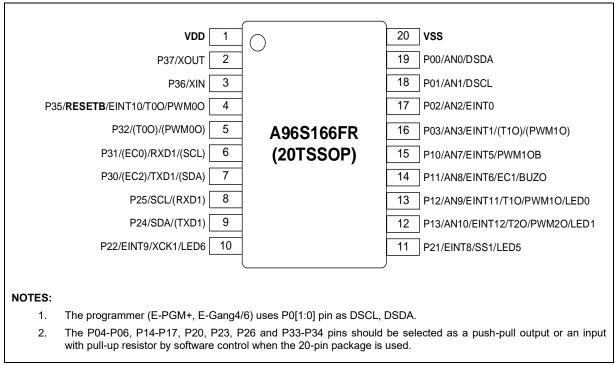


Figure 5. A96S166 20TSSOP Pin Assignment

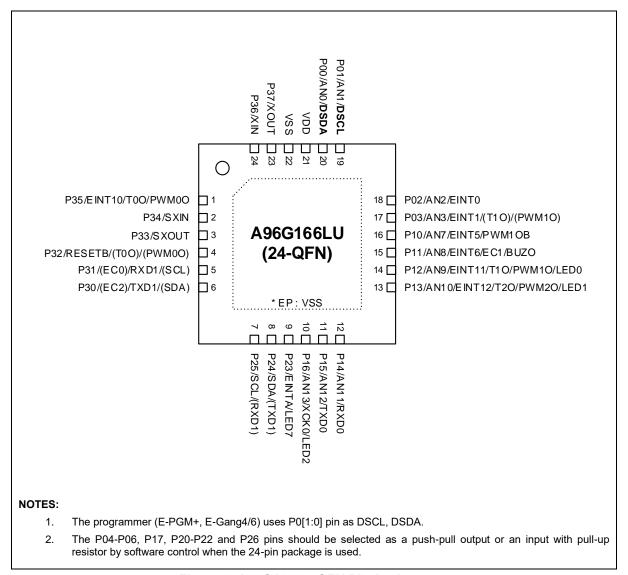


Figure 6. A96G166 24 QFN Pin Assignment

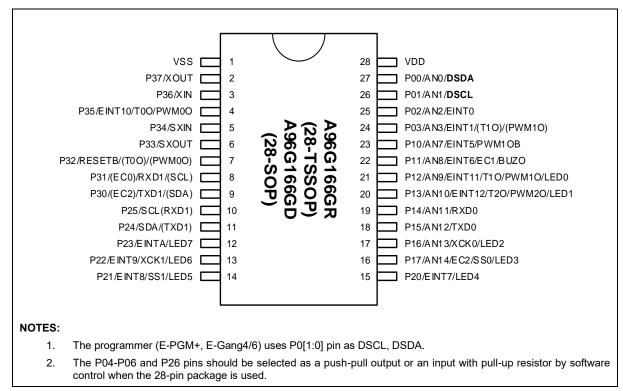


Figure 7. A96G166 28TSSOP / 28 SOP Pin Assignment

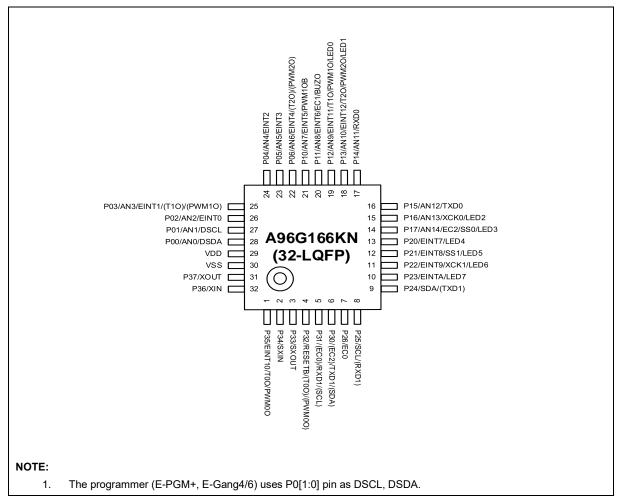


Figure 8. A96G166 32 LQFP Pin Assignment

2.2 Pin description

Table 2. Normal Pin Description

		Pi	n no.				•		
32 LQFP	28 SOP TSSOP	24 QFN	20 TSSOP	20 SOP	16 SOPN	Pin name	I/O ⁽¹⁾	Description	Remark
28	27 20 19 ⁽¹⁹⁾ 19 15		P00*	IOUS	Port 0 bit 0 Input/output				
						AN0	IA	ADC input ch-0	
						DSDA	IOU	OCD debugger data input/output	Pull-up
27	26	19	18(18)	18	14	P01*	IOUS	Port 0 bit 1 Input/output	
						AN1	IA	ADC input ch-1	
						DSCL	IOU	OCD debugger clock	Pull-up
26	25	18	17 ⁽¹⁷⁾	17	-	P02*	IOUS	Port 0 bit 2 Input/output	
						AN2	IA	ADC input ch-2	
						EINT0	I	External interrupt input ch-0	
25	24	17	16 ⁽¹⁶⁾	16	-	P03*	IOUS	Port 0 bit 3 Input/output	
						AN3	IA	ADC input ch-3	
						EINT1	I	External interrupt input ch-1	
						T10	0	Timer 1 interval output	
						PWM1O	0	Timer 1 PWM output	
24	-	-	-	-	-	P04*	IOUS	Port 0 bit 4 Input/output	
						AN4	IA	ADC input ch-4	
						EINT2	I	External interrupt input ch-2	
23	-	-	-	-	-	P05*	IOUS	Port 0 bit 5 Input/output	
						AN5	IA	ADC input ch-5	
						EINT3	I	External interrupt input ch-3	
22	-	-	-	-	13	P06*	IOUS	Port 0 bit 6 Input/output	
						AN6	IA	ADC input ch-6	
						EINT4	I	External interrupt input ch-4	
						T2O	0	Timer 2 interval output	
						PWM2O	0	Timer 2 PWM output	
21	23	16	15 ⁽¹⁵⁾	15	-	P10*	IOUS	Port 1 bit 0 Input/output	
						AN7	IA	ADC input ch-7	
						EINT5	I	External interrupt input ch-5	
						PWM1O B	Ю	Timer 1 PWM complementary output	
20	22	15	14 ⁽¹⁴⁾	14	-	P11*	IOUS	Port 1 bit 1 Input/output	
						AN8	IA	ADC input ch-8	
						EINT6	ı	External interrupt input ch-6	
						EC1	I	Timer 1(Event Capture) input	
						BUZO	0	Buzzer output	

Table 2. Normal Pin Description (continued)

Table 2. Normal Pin Description (continued) Pin no.											
	00	Pi	n no.			Pin					
32 LQFP	28 SOP TSSOP	24 QFN	20 TSSOP	20 SOP	16 SOPN	name	I/O(1)	Description	Remark		
19	21	14	13 ⁽¹³⁾	13	12	P12*	IOUS	Port 1 bit 2 Input/output			
						AN9	IA	ADC input ch-9			
						EINT11	I	External interrupt input ch-11			
						T10	0	Timer 1 interval output			
						PWM1O	0	Timer 1 PWM output			
						LED0	0	High sink current ports			
18	20	13	12(12)	12	11	P13*	IOUS	Port 1 bit 3 Input/output			
						AN10	IA	ADC input ch-10			
						EINT12	I	External interrupt input ch-12			
						T2O	0	Timer 2 interval output			
						PWM2O	0	Timer 2 PWM output			
						LED1	0	High sink current ports			
17	19	12	-	-	10	P14*	IOUS	Port 1 bit 4 Input/output			
						AN11	IA	ADC input ch-11			
						RXD0	I	USART0 data receive			
16	18	11	-	-	9	P15*	IOUS	Port 1 bit 5 Input/output			
						AN12	IA	ADC input ch-12			
						TXD0	0	USART0 data transmit			
15	17	10	-	-	-	P16*	IOUS	Port 1 bit 6 Input/output			
						AN13	IA	ADC input ch-13			
						LED2	0	High sink current ports			
						XCK0	Ю	USART0 clock signal			
14	16	-	-	-	-	P17*	IOUS	Port 1 bit 7 Input/output			
						AN14	IA	ADC input ch-14			
						EC2	I	Timer 2(Event Capture) input			
						SS0	Ю	USART0 slave select signal			
						LED3	0	High sink current ports			
13	15	-	-	-	-	P20*	IOUS	Port 2 bit 0 Input/output			
						EINT7	I	External interrupt input ch-7			
						LED4	0	High sink current ports			
12	14	-	11 ⁽¹¹⁾	11	-	P21*	IOUS	Port 2 bit 1 Input/output			
						EINT8	I	External interrupt input ch-8			
						SS1	Ю	USART1 slave select signal			
						LED5	0	High sink current ports			
11	13	-	10 ⁽¹⁰⁾	10	8	P22*	IOUS	Port 2 bit 2 Input/output			
						EINT9	I	External interrupt input ch-9			
						XCK1	Ю	USART1 clock signal			
						LED6	0	High sink current ports			
10	12	9	-	_	-	P23*	IOU	Port 2 bit 3 Input /output			
	·-					EINTA	1	External interrupt input ch-A			
						LED7	0	High sink current ports			
						LEDI	U	riigii sirik current ports			

Table 2. Normal Pin Description (continued)

		Pi	n no.	DIC Z. I	iorinar r	Pin Descri Pin	1/0(1)	Description	Remark
32 LQFP	28 SOP TSSOP	24 QFN	20 TSSOP	20 SOP	16 SOPN	name	20(1)		
9	11	8	9(9)	9	7	P24*	IOU	Port 2 bit 4 Input /output	
						SDA	Ю	I2C data signal	
						TXD1	0	USART1 data transmit	
8	10	7	8(8)	8	6	P25*	IOU	Port 2 bit 5 Input /output	
						SCL	Ю	I2C clock signal	
						RXD1	I	USART1 data receive	
7	-	-	-	-	5	P26*	IOU	Port 2 bit 6 Input /output	
						EC0	I	Timer 0(Event Capture) input	
6	9	6	7 ⁽⁷⁾	7	-	P30*	IOUS	Port 3 bit 0 Input /output	
						TXD1	0	USART1 data transmit	
						EC2	I	Timer 2(Event Capture) input	
						SDA	Ю	I2C data signal	
5	5 8 5		6(6)	6	-	P31*	IOUS	Port 3 bit 1 Input /output	
						RXD1	I	USART1 data receive	
						EC0	I	Timer 0(Event Capture) input	
						SCL	Ю	I2C clock signal	
4	7	4	5 ⁽⁵⁾	5	4	P32*	IOUS	Port 3 bit 2 Input /output	
						RESETB	IU	A96G166 only, Reset pin	Pull-up
						T0O	0	Timer 0 interval output	
						PWM0O	0	Timer 0 PWM output	
3	6	3	-	-	-	P33*	IOUS	Port 3 bit 3 Input /output	
						SXOUT	0	Sub Oscillator Output	
2	5	2	-	-	-	P34*	IOUS	Port 3 bit 4 Input /output	
						SXIN	I	Sub Oscillator Input	
1	4	1	4 ⁽⁴⁾	4	-	P35*	IOUS	Port 3 bit 5 Input /output	
						EINT10	I	External interrupt input ch-10	
						T0O	0	Timer 0 interval output	
						PWM0O	0	Timer 0 PWM output	
						RESETB	IU	A96S166 only, Reset pin	Pull-up
32	3	24	3 ⁽³⁾	3	3	P36*	IOUS	Port 3 bit 6 Input/output	
			- (0)			XIN	1	Main Oscillator Input	
31	2	23	2 ⁽²⁾	2	2	P37*	IOUS	Port 3 bit 7 Input/output	
0.0	0.5	0.	05(4)	0.0	4.5	XOUT	ı	Main Oscillator Output	
29	28	21	20(1)	20	16	VDD	Р	VDD	
30	1	22	1 ⁽²⁰⁾	1	1	VSS	Р	VSS	

NOTES:

- 1. The (*) is applied to 20 TSSOP of A96S166
- 2. The P04–P06 and P26 are not in the 28-pin package.
- 3. The P04–P06, P17, P20-P22 and P26 are not in the 24-pin package.
- 4. The P04–P06, P14-P17, P20, P23, P26 and P33-P34 are not in the 20-pin package.
- 5. The P02-P05, P10-P11, P16-P17, P20-P21, P23, P30-P31 and P33-P35 are not in the 16-pin package.
- The P32/RESETB (A96G166) pin is configured as one of the P32 and RESETB pin by the "CONFIGURE OPTION." (P35/RESETB: A96S166)
- If the P00/AN0/DSDA and P01/AN1/DSCL pins are connected to the programmer during power-on reset, the pins
 are automatically configured as In-system programming pins.

- The P00/AN0/DSDA and P01/AN1/DSCL pins are configured as inputs with internal pull-up resistor only during the reset or power-on reset.
- 9. The P36/XIN, P37/XOUT, P33/SXOUT, and P34/SXIN pins are configured as a function pin by software control.
- (1) I=Input, O=Output, U=Pull-up, D=Pull-down, S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power
- 11. The * means 'Selected pin function after reset condition

3. Port structures

In this chapter, two port structures are introduced in Figure 9 and Figure 10 regarding general purpose I/O port and external interrupt I/O port respectively.

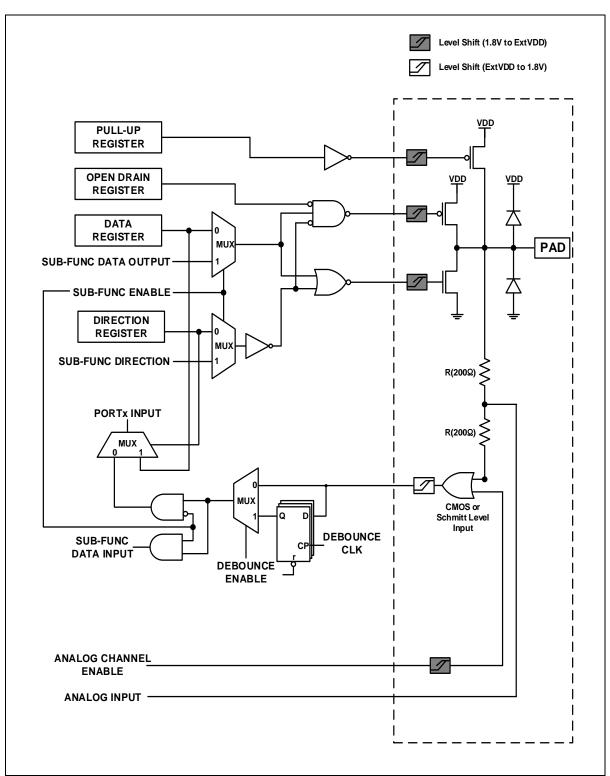


Figure 9. General Purpose I/O Port

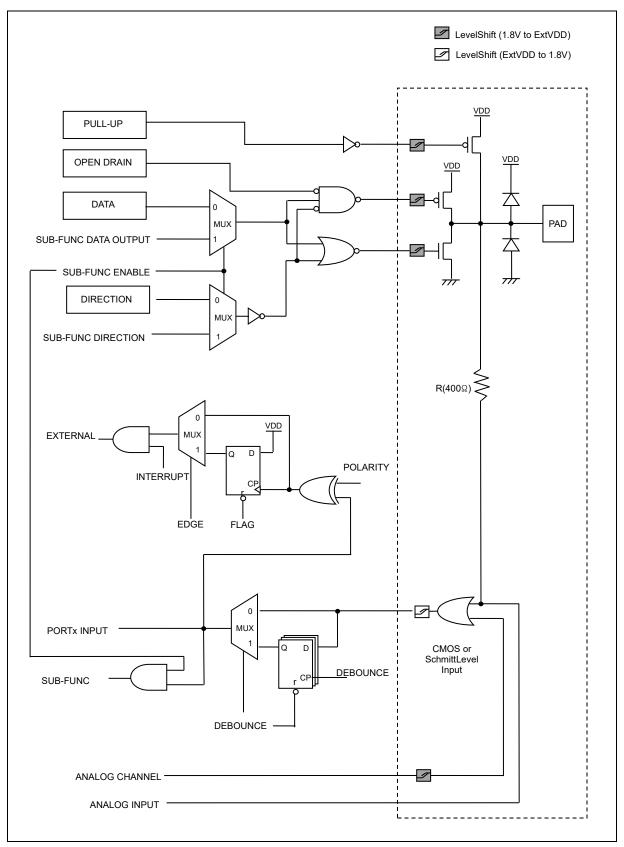


Figure 10. External Interrupt I/O Port

4. Central processing unit (CPU)

Central Processing Unit (CPU) of A96G140/A96G148/A96A148 is based on Mentor Graphics M8051EW core, which offers improved code efficiency and high performance.

4.1 Architecture and registers

Figure 11 shows a block diagram of the M8051EW architecture. As shown in the figure, the M8051EW supports both Program Memory and External Data Memory. In addition, it features a Debug Mode in which it can be driven through a dedicated debug interface.

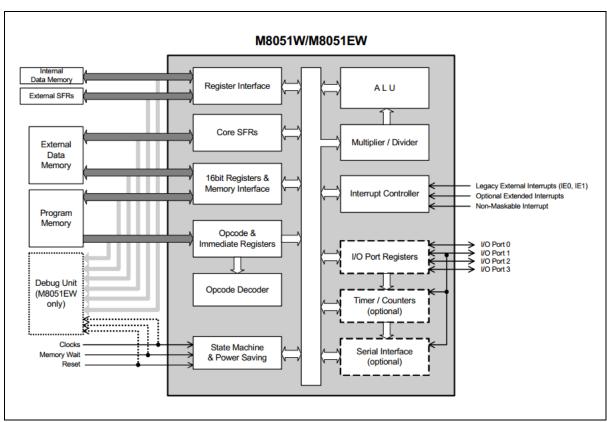


Figure 11. M8051EW Architecture

Main features of the M8051EW are listed below:

• Two clocks per machine cycle architecture:

This allows the device either to run up to six times faster with the same power consumption or to consume one sixth of the power when running at standard speed. All instructions have zero-wait-state execution times that are exactly 1/6 of the time each standard part takes.

Debug support (OCD and OCD II):

The M8051EW offers a Debug Mode together with a set of dedicated debug signals which can be used by external debug hardware, OCD and OCD II, to provide start/stop program execution in response to both hardware and software triggers, single step operation and program execution tracing.

- Separate Program and External Data Memory interfaces or a single multiplexed interface
 - Up to 1Mbyte of External Data Memory, accessible by selecting one from interfaces
 - Up to 256bytes of Internal Data Memory
 - Up to 1Mbyte of RAM or ROM Program Memory, accessible by selecting one from interfaces
- Support for synchronous and asynchronous Program, External Data and Internal Data Memory
- Wait states support for slow Program and External Data Memory.
- 16-bit Data Memory address is generated through the Data Pointer register (DPTR register).
- 16-bit program counter is capable of addressing up to Flash size in each device.
- A single data pointer, two memory-mapped data pointers, or 2, 4 or 8 banked data pointers
- Support for 2 or 4 level of priority scheme up to 24 maskable Interrupt sources
- External Special Function Register (SFR) are memory mapped into Direct Memory at the address between 80 hex and FF hex.

4.2 Addressing

The M8051EW supports six types of addressing modes as listed below:

- 1. Direct addressing mode: In this mode, the operand is specified by the 8-bit address field. Only internal data and SFRs can be accessed using this mode.
- Indirect addressing mode: In this mode, the operand is specified by addresses contained in a register. Two registers (R0 and R1) from the current bank or the Data Pointer may be used for addressing in this mode. Both internal and external Data Memory may be indirectly addressed.
- 3. Register addressing mode: In this mode, the operand is specified by the top 3 bits of the opcode, which selects one of the current bank of registers. Four banks of registers are available. The current bank is selected by the 3rd and 4th bits of the PSW.
- 4. Register specific addressing mode: In this mode, some instructions only operate on specific registers. This is defined by the opcode. In particular many accumulator operations and some stack pointer operations are defined in this manner.
- Immediate DATA mode: In this mode, Instructions which use Immediate Data are 2 or more bytes long and the Immediate operand is stored in Program Memory as part of the instruction.

Example) MOV A, #100

It loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64H.

Indexed addressing mode: In this mode, only Program Memory can be addressed. It is
intended for simple implementation of look-up tables. A 16-bit base register (either the PC or
the DPTR) is combined with an offset stored in the accumulator to access data in Program
Memory.

4.3 Instruction set

An instruction is a single operation of a processor that is defined by the instruction set. The M8051EW uses the instruction set of 8051 that is broadly classified into five functional categories:

- 1. Arithmetic instructions
- 2. Logical instructions
- 3. Data transfer instructions
- 4. Boolean instructions
- 5. Branching instructions

Major features of the instruction set are listed below. If you need detailed information about the instruction table, please refer to Appendix or Instruction table

- Instructions are either 1, 2 or 3 bytes long as listed in the 'Bytes'.
- Each instruction takes either 1, 2 or 4 machine cycles to execute. 1 machine cycle comprises 2 CCLK clock cycles.
- An M8051EW-specific instruction "MOVC @(DPTR++), A" is provided to enable software to be downloaded into Program Memory where this is implemented as RAM. This instruction can also be used subsequently to modify contents of the Program Memory RAM.
- Arithmetic Instruction: The M8051EW implements ADD, ADDC (Add with Carry), SUBB (Subtract with Borrow), INC (Increment) and DEC (Decrement) functions, which can be used in most addressing modes. There are three accumulator-specific instructions, DA A (Decimal Adjust A), MUL AB (Multiply A by B) and DIV AB (Divide A by B).
- Logical Instruction: The M8051EW implements ANL (AND Logical), ORL (OR Logical), and XRL (Exclusive-OR Logical) functions, which can be used in most addressing modes. There are seven accumulator-specific instructions, CLR A (Clear A), CPL A (Complement A), RL A (Rotate Left A), RLC A (Rotate Left through Carry A), RR A (Rotate Right A), RRC A (Rotate Right through Carry A), and SWAP A (Swap Nibbles of A).
- Internal data memory: Data can be moved from the accumulator to any Internal Data Memory location, from any Internal Data Memory location to the accumulator, and from any Internal Data Memory location to any SFR or other Internal Data Memory location.
- External data memory: Data can be moved between the accumulator and the external memory location in one of two addressing modes. In 8-bit addressing mode, the external location is addressed by either R0 or R1; in 16-bit addressing mode, the location is addressed by the DPTR.
- Unconditional Jumps: Four sorts of unconditional jump instructions are available.
 - Short jumps (SJMP) are relative jumps (limited from -128bytes to +127bytes).
 - Long jumps (LJMP) are absolute 16-bit jumps.

- Absolute jumps (AJMP) are absolute 11-bit jumps (ex. within a 2Kbyte memory page).
- Indexed jump, JMP @A+DPTR. This instruction jumps to a location of which address is stored in DPTR register and offset by a value stored in the accumulator.
- Subroutine calls and returns: There are only two sorts of subroutine call, ACALL and LCALL, which are Absolute and Long. Two return instructions are provided, RET and RETI. The latter is for interrupt service routines.
- Conditional jumps: All conditional jump instructions use relative addressing, so they are limited to the range of -128bytes to +127bytes.
- Boolean instructions: The bit-addressable registers in both direct and SFR space may be
 manipulated using Boolean instructions. Logical functions are available which use the carry
 flag and an addressable bit as operands. Each addressable bit can be set, cleared or tested
 in a jump instruction.
- Flag: Certain instructions affect one or more flags that are generated by ALU.

5. Memory organization

A96G166/A96A166/A96S166 addresses two separate address memory spaces:

- Program memory
- Data memory

By means of this logical separation of the memory, 8-bit CPU address can access the data memory more rapidly. 16-bit data memory address is generated through the DPTR register.

A96G166/A96A166/A96S166 provides on-chip 16Kbytes of the ISP type flash program memory, which readable and writable. Internal data memory (IRAM) is 256bytes and it includes the stack area. External data memory (XRAM) is 512bytes.

5.1 Program memory

A 16-bit program counter is capable of addressing up to 64Kbytes, and A96G166/A96A166/A96S166 has just 16Kbytes program memory space.

Figure 12 shows a map of the lower part of the program memory.

After reset, CPU begins execution from location 0000H. Each interrupt is assigned a fixed location in the program memory. An interrupt causes the CPU to jump to the corresponding location, where it commences execution of the service routine.

An external interrupt 11, for example, is assigned to location 000BH. If the external interrupt 11 is going to be used, its service routine must begin at location 000BH. If the interrupt is not going to be used, its service location is available as general purpose program memory. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within an interval of 8-bytes.

Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

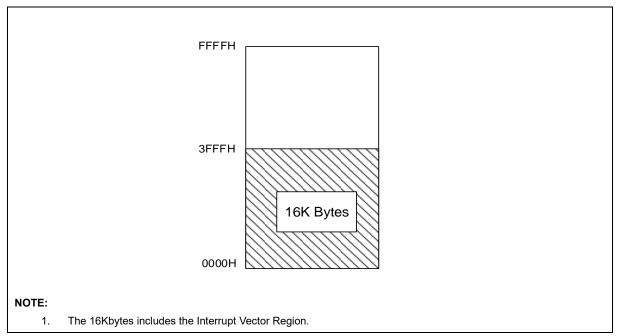


Figure 12. Program Memory Map

5.2 Data memory

Internal data memory space is divided into three blocks, which are generally referred to as lower 128bytes, upper 128bytes, and SFR space. Internal data memory addresses are always one byte wide, which implies an address space of 256bytes. In fact, the addressing modes for the internal data memory can accommodate up to 384bytes by using a simple trick. Direct addresses higher than 7FH access one memory space, while indirect addresses higher than 7FH access a different memory space. Thus as shown in Figure 13, the upper 128bytes and SFR space occupy the same block of addresses, 80H through FFH, although they are physically separate entities.

The lower 128bytes of RAM are present in all 8051 devices as mapped in Figure 14. The lowest 32bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

The next 16bytes above the register banks form a block of bit-addressable memory space. The 8051 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the lower 128bytes can be accessed by either direct or indirect addressing. The upper 128bytes of RAM can only be accessed by indirect addressing. These spaces are used for data RAM and stack.

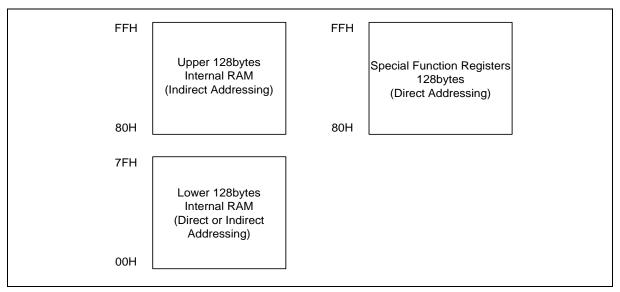


Figure 13. Data Memory Map

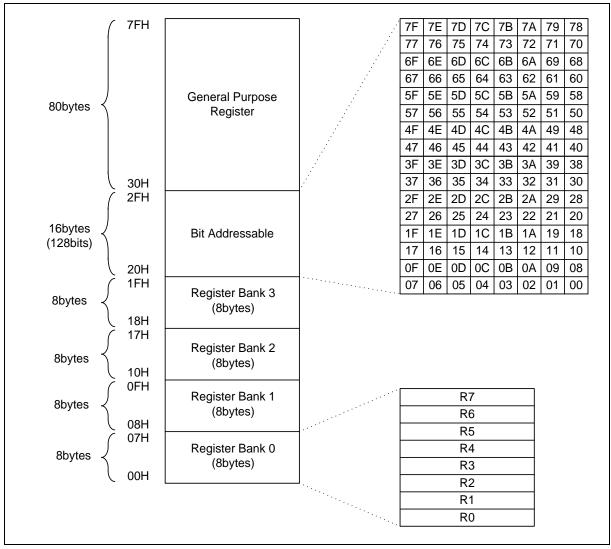


Figure 14. Lower 128-bytes of RAM

5.3 External data memory

A96G166/A96A166/A96S166 has 512bytes of XRAM and XSFR. This area has no relation with RAM/FLASH. It can be read and written to through SFR with 8-bit unit.

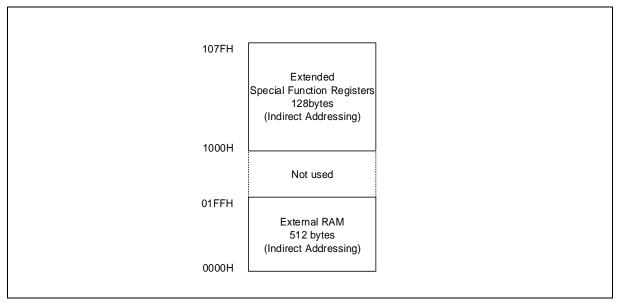


Figure 15. XDATA Memory Area

5.4 SFR map

5.4.1 SFR map summary

Table 3. SFR Map Summary

_	Reserved
	M8051 compatible

	00H/8H ⁽¹⁾	01H/9H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
0F8H	IP1	-	-	-	U0BAUD	U0DATA	-	-
0F0H	В	U1CTRL1	U1CTRL2	U1CTRL3	_	U1BAUD	U1DATA	U1STAT
0E8H	RSTFR	I2CSAR	I2CSAR1	_	_	_	_	-
0E0H	ACC	I2CMR	I2CSR	I2CSCLLR	I2CSCLHR	I2CSDAHR	I2CDR	-
0D8H	LVRCR	T1CDRL	T1CDRH	T1DDRL	T1DDRH	_	P0DB	P12DB
0D0H	PSW	_	P0FSRL	P0FSRH	P1FSRL	P1FSRH	P2FSRL	P2FSRH
0C8H	OSCCR	_	_	U0CTRL1	U0CTRL2	U0CTRL3	_	U0STAT
0C0H	EIFLAG0	_	T2CRL	T2CRH	T2ADRL	T2ADRH	T2BDRL	T2BDRH
0B8H	IP	P2IO	T1CRL	T1CRH	T1ADRL	T1ADRH	T1BDRL	T1BDRH
0B0H	-	P1IO	T0CR	TOCNT	T0DR/ T0CDR			
H8A0	IE	IE1	IE2	IE3	P0PU	P1PU	P2PU	P3PU
0A0H	_	P0IO	EO	EIPOL2	EIPOL0L	EIPOL0H	EIFLAG1	EIPOL1
98H	P3	P3IO	P3FSRL	P3FSRH	ADCCRL	ADCCRH	ADCDRL	ADCDRH
90H	P2	P0OD	P1OD	P2OD	P3OD	_	WTCR	BUZCR
88H	P1	WTDR/ WTCNT	SCCR	BITCR	BITCNT	WDTCR	WDTIDR	BUZDR
80H	P0	SP	DPL	DPH	DPL1	DPH1	LVICR	PCON

NOTE:

1. 00H/8H, these registers are bit-addressable.

Table 4. XSFR Map Summary

	00H/8H ⁽¹⁾	01H/9H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
1078H	_	CRC_ADDR _START_H	CRC_ADDR _START_M	CRC_ADDR _START_L	CRC_ADDR _END_H	CRC_ADDR _END_M	CRC_ADDR _END_L	-
1070H	CRC_CON	_	CRC_H	CRC_L	CRC_MNT _H	CRC_MNT _L	_	_
1068H	-	_	_	_	_	_	_	_
1060H	_	_	_	_	_	_	_	_
1058H	_	_	-	-	-	-	-	_
1050H	_	_	-	-	-	-	-	_
1048H	-	_	-	-	-	-	-	_
1040H	-	-	-	-	-	-	-	_
1038H	XTFLSR	_	-	-	-	-	-	_
1030H	-	_	-	-	-	-	-	_
1028H	FEARH	FEARM	FEARL	FEDR	FETR	-	-	_
1020H	FEMR	FECR	FESR	FETCR	FEARM1	FEARL1	-	_
1018H	U0CTRL4	U1CTRL4	FPCR0	RTOCH0	RTOCL0	FPCR1	RTOCH1	RTOCL1
1010H	WDTC	WDTSR	WDTCNTH	WDTCNTL		_	_	_
1008H	_	_	-	-	-	-	-	_
1000H	_	_	-	-	-	-	-	_

5.4.2 SFR map

Table 5. SFR Map

	Function	5. SFK Wap					@R	eset			
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
80H	P0 Data Register	P0	R/W	0	0	0	0	0	0	0	0
81H	Stack Pointer	SP	R/W	0	0	0	0	0	1	1	1
82H	Data Pointer Register Low	DPL	R/W	0	0	0	0	0	0	0	0
83H	Data Pointer Register High	DPH	R/W	0	0	0	0	0	0	0	0
84H	Data Pointer Register Low 1	DPL1	R/W	0	0	0	0	0	0	0	0
85H	Data Pointer Register High 1	DPH1	R/W	0	0	0	0	0	0	0	0
86H	Low Voltage Indicator Control Register	LVICR	R/W	-	-	0	0	0	0	0	0
87H	Power Control Register	PCON	R/W	0	_	_	-	0	0	0	0
88H	P1 Data Register	P1	R/W	0	0	0	0	0	0	0	0
89H	Watch Timer Data Register	WTDR	W	0	1	1	1	1	1	1	1
	Watch Timer Counter Register	WTCNT	R	0	0	0	0	0	0	0	0
8AH	System and Clock Control Register	SCCR	R/W	-	-	-	-	-	-	0	0
8BH	Basic Interval Timer Control Register	BITCR	R/W	0	1	0	0	0	1	0	1
8CH	Basic Interval Timer Counter Register	BITCNT	R	0	0	0	0	0	0	0	0
8DH	Watchdog Timer Control Register	WDTCR	R/W	0	0	0	0	0	1	1	1
8EH	Watchdog Timer Identification Register	WDTIDR	W	0	0	0	0	0	0	0	0
8FH	Buzzer Data Register	BUZDR	R/W	1	1	1	1	1	1	1	1
90H	P2 Data Register	P2	R/W	0	0	0	0	0	0	0	0
91H	P0 Open-drain Selection Register	P0OD	R/W	0	0	0	0	0	0	0	0
92H	P1 Open-drain Selection Register	P1OD	R/W	0	0	0	0	0	0	0	0
93H	P2 Open-drain Selection Register	P2OD	R/W	0	0	0	0	0	0	0	0
94H	P3 Open-drain Selection Register	P3OD	R/W	0	0	0	0	0	0	0	0
96H	Watch Timer Control Register	WTCR	R/W	0	0	0	0	0	0	0	0
97H	Buzzer Control Register	BUZCR	R/W	0	0	0	0	0	0	0	0
98H	P3 Data Register	P3	R/W	0	0	0	0	0	0	0	0
99H	P3 Direction Register	P3IO	R/W	0	0	0	0	0	0	0	0
9AH	P3 Function Selection Low Register	P3FSRL	R/W	0	0	0	0	0	0	0	0
9BH	P3 Function Selection High Register	P3FSRH	R/W	0	0	0	0	0	0	0	0
9CH	A/D Converter Control Low Register	ADCCRL	R/W	0	0	0	0	0	0	0	0
9DH	A/D Converter Control High Register	ADCCRH	R/W	0	0	0	0	0	0	0	1
9EH	A/D Converter Data Low Register	ADCDRL	R	х	х	х	х	х	х	х	х
9FH	A/D Converter Data High Register	ADCDRH	R	х	х	х	х	х	х	х	х

Table 5. SFR Map (continued)

		ap (continue					@R	eset			
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
A1H	P0 Direction Register	P0IO	R/W	0	0	0	0	0	0	0	0
A2H	Extended Operation Register	EO	R/W	_	_	_	0	-	0	0	0
АЗН	External Interrupt Polarity 2 Register	EIPOL2	R/W	0	0	0	0	0	0	0	0
A4H	External Interrupt Polarity 0 Low Register	EIPOL0L	R/W	0	0	0	0	0	0	0	0
A5H	External Interrupt Polarity 0 High Register	EIPOL0H	R/W	0	0	0	0	0	0	0	0
A6H	External Interrupt Flag 1 Register	EIFLAG1	R/W	0	0	-	-	0	0	0	0
A7H	External Interrupt Polarity 1 Register	EIPOL1	R/W	0	0	0	0	0	0	0	0
A8H	Interrupt Enable Register	IE	R/W	0	-	0	0	0	0	0	0
А9Н	Interrupt Enable Register 1	IE1	R/W	-	-	0	0	0	0	0	0
AAH	Interrupt Enable Register 2	IE2	R/W	_	_	0	0	0	0	0	0
ABH	Interrupt Enable Register 3	IE3	R/W	-	-	0	0	0	0	0	0
ACH	P0 Pull-up Resistor Selection Register	P0PU	R/W	0	0	0	0	0	0	0	0
ADH	P1 Pull-up Resistor Selection Register	P1PU	R/W	0	0	0	0	0	0	0	0
AEH	P2 Pull-up Resistor Selection Register	P2PU	R/W	0	0	0	0	0	0	0	0
AFH	P3 Pull-up Resistor Selection Register	P3PU	R/W	0	0	0	0	0	0	0	0
B1H	P1 Direction Register	P1IO	R/W	0	0	0	0	0	0	0	0
В2Н	Timer 0 Control Register	T0CR	R/W	0	_	0	0	0	0	0	0
взн	Timer 0 Counter Register	T0CNT	R	0	0	0	0	0	0	0	0
В4Н	Timer 0 Data Register	T0DR	R/W	1	1	1	1	1	1	1	1
	Timer 0 Capture Data Register	T0CDR	R	0	0	0	0	0	0	0	0
В8Н	Interrupt Priority Register	IP	R/W	_	_	0	0	0	0	0	0
В9Н	P2 Direction Register	P2IO	R/W	0	0	0	0	0	0	0	0
BAH	Timer 1 Control Low Register	T1CRL	R/W	0	0	0	0	-	0	0	0
ВВН	Timer 1 Counter High Register	T1CRH	R/W	0	-	0	0	-	-	-	0
ВСН	Timer 1 A Data Low Register	T1ADRL	R/W	1	1	1	1	1	1	1	1
BDH	Timer 1 A Data High Register	T1ADRH	R/W	1	1	1	1	1	1	1	1
BEH	Timer 1 B Data Low Register	T1BDRL	R/W	1	1	1	1	1	1	1	1
BFH	Timer 1 B Data High Register	T1BDRH	R/W	1	1	1	1	1	1	1	1
D9H	Timer 1 C Data Low Register	T1CDRL	R/W	1	1	1	1	1	1	1	1
DAH	Timer 1 C Data High Register	T1CDRH	R/W	1	1	1	1	1	1	1	1
DBH	Timer 1 D Data Low Register	T1DDRL	R/W	1	1	1	1	1	1	1	1
DCH	Timer 1 D Data High Register	T1DDRH	R/W	1	1	1	1	1	1	1	1

Table 5. SFR Map (continued)

	Table 3. SFN W	FR Map (continued)	@Reset									
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0	
C0H	External Interrupt Flag 0 Register	EIFLAG0	R/W	0	0	0	0	0	0	0	0	
C2H	Timer 2 Control Low Register	T2CRL	R/W	0	0	0	0	-	0	-	0	
СЗН	Timer 2 Control High Register	T2CRH	R/W	0	_	0	0	_	_	_	0	
C4H	Timer 2 A Data Low Register	T2ADRL	R/W	1	1	1	1	1	1	1	1	
C5H	Timer 2 A Data High Register	T2ADRH	R/W	1	1	1	1	1	1	1	1	
С6Н	Timer 2 B Data Low Register	T2BDRL	R/W	1	1	1	1	1	1	1	1	
C7H	Timer 2 B Data High Register	T2BDRH	R/W	1	1	1	1	1	1	1	1	
C8H	Oscillator Control Register	OSCCR	R/W	-	0	1	0	1	0	0	0	
СВН	USART0 Control Register 1	U0CTRL1	R/W	0	0	0	0	0	0	0	0	
ССН	USART0 Control Register 2	U0CTRL2	R/W	0	0	0	0	0	0	0	0	
CDH	USART0 Control Register 3	U0CTRL3	R/W	0	0	0	0	_	0	0	0	
CFH	USART0 Status Register	U0STAT	R/W	1	0	0	0	0	0	0	0	
FCH	USART0 Baud Rate Generation Register	U0BAUD	R/W	1	1	1	1	1	1	1	1	
FDH	USART0 Data Register	U0DATA	R/W	0	0	0	0	0	0	0	0	
D0H	Program Status Word Register	PSW	R/W	0	0	0	0	0	0	0	0	
D2H	P0 Function Selection Low Register	P0FSRL	R/W	0	0	0	0	0	0	0	0	
D3H	P0 Function Selection High Register	P0FSRH	R/W	0	0	0	0	0	0	0	0	
D4H	P1 Function Selection Low Register	P1FSRL	R/W	0	0	0	0	0	0	0	0	
D5H	P1 Function Selection High Register	P1FSRH	R/W	0	0	0	0	0	0	0	0	
D6H	P2 Function Selection Low Register	P2FSRL	R/W	-	-	0	0	0	0	0	0	
D7H	P2 Function Selection High Register	P2FSRH	R/W	-	-	0	0	0	0	0	0	
D8H	Low Voltage Reset Control Register	LVRCR	R/W	-	-	-	0	0	0	0	0	
DEH	P0 De-bounce Enable Register	P0DB	R/W	0	0	0	0	0	0	0	0	
DFH	P1 De-bounce Enable Register	P1DB	R/W	0	0	0	0	0	0	0	0	
E0H	Accumulator Register	ACC	R/W	0	0	0	0	0	0	0	0	
E1H	I2C Mode Control Register	I2CMR	R/W	0	0	0	0	0	0	0	0	
E2H	I2C Status Register	I2CSR	R	0	0	0	0	0	0	0	0	
ЕЗН	SCL Low Period Register	I2CSCLLR	R/W	0	0	1	1	1	1	1	1	
E4H	SCL High Period Register	I2CSCLHR	R/W	0	0	1	1	1	1	1	1	
E5H	SDA Hold Time Register	I2CSDAHR	R/W	0	0	0	0	0	0	0	1	
E6H	I2C Data Register	I2CDR	R/W	1	1	1	1	1	1	1	1	
E8H	Reset Flag Register	RSTFR	R/W	1	х	0	0	х	_	_	_	
Е9Н	I2C Slave Address Register	I2CSAR	R/W	0	0	0	0	0	0	0	0	
EAH	I2C Slave Address Register 1	I2CSAR1	R/W	0	0	0	0	0	0	0	0	

Table 5. SFR Map (continued)

Address	Function	Symbol	R/W	@Reset								
Audress	Fullction	Syllibol	IX/VV	7	6	5	4	3	2	1	0	
F0H	B Register	В	R/W	0	0	0	0	0	0	0	0	
F1H	USART1 Control Register 1	U1CTRL1	R/W	0	0	0	0	0	0	0	0	
F2H	USART1 Control Register 2	U1CTRL2	R/W	0	0	0	0	0	0	0	0	
F3H	USART1 Control Register 3	U1CTRL3	R/W	0	0	0	0	_	0	0	0	
F5H	USART1 Baud Rate Generation Register	U1BAUD	R/W	1	1	1	1	1	1	1	1	
F6H	USART1 Data Register	U1DATA	R/W	0	0	0	0	0	0	0	0	
F7H	USART1 Status Register	U1STAT	R/W	1	0	0	0	0	0	0	0	
F8H	Interrupt Priority Register 1	IP1	R/W	_	_	0	0	0	0	0	0	

Table 6. XSFR Map

Address Superior		D 044				@R	eset				
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
1010H	Watchdog Timer Clear Register	WDTC	R/W	0	0	0	0	0	0	0	0
1011H	Watchdog Timer Status Register	WDTSR	R/W	0	0	0	0	0	0	0	0
1012H	Watchdog Timer Count H Register	WDTCNTH	R	0	0	0	0	0	0	0	0
1013H	Watchdog Timer Count L Register	WDTCNTL	R	0	0	0	0	0	0	0	0
1018H	USART0 Control Register 4	U0CTRL4	R/W	-	_	_	0	0	0	0	0
1019H	USART1 Control Register 4	U1CTRL4	R/W	-	_	_	0	0	0	0	0
101AH	USART0 Floating Point Counter	FPCR0	R/W	0	0	0	0	0	0	0	0
101BH	USART0 Receiver Time Out Counter High Register	RTOCH0	R	0	0	0	0	0	0	0	0
101CH	USART0 Receiver Time Out Counter Low Register	RTOCL0	R	0	0	0	0	0	0	0	0
101DH	USART1 Floating Point Counter	FPCR1	R/W	0	0	0	0	0	0	0	0
101EH	USART1 Receiver Time Out Counter High Register	RTOCH1	R	0	0	0	0	0	0	0	0
101FH	USART1 Receiver Time Out Counter Low Register	RTOCL1	R	0	0	0	0	0	0	0	0
1020H	Flash Mode Register	FEMR	R/W	0	-	0	0	0	0	0	0
1021H	Flash Control Register	FECR	R/W	0	-	0	0	0	0	1	1
1022H	Flash Status Register	FESR	R/W	1	-	-	-	0	0	0	0
1023H	Flash Time Control Register	FETCR	R/W	0	0	0	0	0	0	0	0
1024H	Flash Address Middle Register 1	FEARM1	R/W	0	0	0	0	0	0	0	0
1025H	Flash Address Low Register 1	FEARL1	R/W	0	0	0	0	0	0	0	0
1028H	Flash Address High Register	FEARH	R/W	0	0	0	0	0	0	0	0
1029H	Flash Address Middle Register	FEARM	R/W	0	0	0	0	0	0	0	0
102AH	Flash Address Low Register	FEARL	R/W	0	0	0	0	0	0	0	0
1038H	Main Crystal OSC Filter Selection Register	XTFLSR	R/W	0	0	0	0	0	0	0	0
1070H	CRC Control Register	CRC_CON	R/W	0	0	0	0	0	0	0	0
1072H	CRC High Register	CRC_H	R/W	0	0	0	0	0	0	0	0
1073H	CRC Low Register	CRC_L	R/W	0	0	0	0	0	0	0	0
1074H	CRC Monitor High Register	CRC_MNT_H	R/W	0	0	0	0	0	0	0	0
1075H	CRC Monitor Low Register	CRC_MNT_L	R/W	0	0	0	0	0	0	0	0
1079H	CRC Start Address High Register	CRC_ADDR_START_H	R/W	0	0	0	0	0	0	0	0
107AH	CRC Start Address Middle Register	CRC_ADDR_START_M	R/W	0	0	0	0	0	0	0	0
107BH	CRC Start Address Low Register	CRC_ADDR_START_L	R/W	0	0	0	0	0	0	0	0
107CH	CRC End Address High Register	CRC_ADDR_END_H	R/W	0	0	0	0	0	0	0	0
107DH	CRC End Address Middle Register	CRC_ADDR_END_M	R/W	0	0	0	0	0	0	0	0
107EH	CRC End Address Low Register	CRC_ADDR_END_L	R/W	0	0	0	0	0	0	0	0

5.4.3 Compiler compatible SFR

ACC (Accumulator Register): E0H

7	6	5	4	3	2	1	0
			A	CC			
R/W							

Initial value: 00H

ACC Accumulator

B (B Register): F0H

7	6	5	4	3	2	1	0				
			1	В							
RW	RW	RW	RW	RW	RW	RW	RW				
	Initial value: 00H										

B Register

SP (Stack Pointer): 81H

7	6	5	4	3	2	1	0			
SP										
RW										

Initial value: 07H

SP Stack Pointer

DPL (Data Pointer Register Low): 82H

В

7	6	5	4	3	2	1	0				
	DPL										
RW	RW	RW	RW	RW	RW	RW	RW				

Initial value: 00H

DPL Data Pointer Low

DPH (Data Pointer Register High): 83H

7	6	5	4	3	2	1	0			
DPH										
RW	RW	RW	RW	RW	RW	RW	RW			

Initial value: 00H

DPH Data Pointer High

DPL1 (Data Pointer Register Low 1): 84H

7	6	5	4	3	2	1	0				
DPL1											
RW	RW	RW	RW	RW	RW	RW	RW				

Initial value: 00H

DPL1 Data Pointer Low 1

DPH1 (Data Pointer Register High 1): 85H

7	6	5	4	3	2	1	0				
DPH1											
RW	RW	RW	RW	RW	RW	RW	RW				

Initial value: 00H

DPH1 Data Pointer High 1

PSW (Program Status Word Register): D0H

7	6	5	4	3	2	1	0
CY	AC	F0	RS1	RS0	OV	F1	Р
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

CY Carry Flag **Auxiliary Carry Flag** AC F0 General Purpose User-Definable Flag RS1 Register Bank Select bit 1 RS0 Register Bank Select bit 0 OV Overflow Flag F1 User-Definable Flag Ρ Parity Flag. Set/Cleared by hardware each instruction cycle to indicate an odd/even number of '1' bits in the accumulator

EO (Extended Operation Register): A2H

7	6	5	4	3	2	1	0
_	_	_	TRAP_EN	_	DPSEL2	DPSEL1	DPSEL0
_	_	_	RW	_	RW	RW	RW

Initial value: 00H

TRAP_EN	Select the Ins	Select the Instruction (Keep always '0').					
	0	Select MOVC @(DPTR++), A					
	1	Select Software TRAP Instruction					
DPSEL[2:0]	Select Banked Data Pointer Register						
	DPSEL2	DPSEL1	SPSEL0	Description			
	0	0	0	DPTR0			
	0	0	1	DPTR1			
	Reserved						

6. I/O ports

A96G166/A96A166/A96S166 has ten groups of I/O ports (P0 to P2). Each port can be easily configured by software as I/O pin, internal pull up and open-drain pin to meet various system configurations and design requirements. P0 includes a function that can generate interrupt signals according to state of a pin.

6.1 Port register

6.1.1 Data register (Px)

Data register is a bidirectional I/O port. If ports are configured as output ports, data can be written to the corresponding bit of the Px. If ports are configured as input ports, the data can be read from the corresponding bit of the Px.

6.1.2 Direction register (PxIO)

Each I/O pin can be independently used as an input or an output through the PxIO register. Bits cleared in this register will make the corresponding pin of Px to input mode. Set bits of this register will make the pin to output mode. Almost bits are cleared by a system reset, but some bits are set by a system reset.

6.1.3 Pull-up register selection register (PxPU)

The on-chip pull-up resistor can be connected to I/O ports individually with a pull-up resistor selection register (PxPU). The pull-up register selection controls the pull-up resister enable/disable of each port. When the corresponding bit is 1, the pull-up resister of the pin is enabled. When 0, the pull-up resister is disabled. All bits are cleared by a system reset.

6.1.4 Open-drain Selection Register (PxOD)

There are internally open-drain selection registers (PxOD) for P0 ~ P1 and a bit for P2. The open-drain selection register controls the open-drain enable/disable of each port. Almost ports become push-pull by a system reset, but some ports become open-drain by a system reset.

6.1.5 De-bounce Enable Register (PxDB)

All I/O Ports support debounce function. Debounce clocks of each ports are fx/1, fx/4, and fx/4096.

6.1.6 Port Function Selection Register (PxFSR)

These registers define alternative functions of ports. Please remember that these registers should be set properly for alternative port function. A reset clears the PxFSR register to '00H', which makes all pins to normal I/O ports.

6.1.7 Register Map

Table 7. Port Register Map

Name	Address	Direction	Default	Description
P0	80H	R/W	00H	P0 Data Register
P0IO	A1H	R/W	00H	P0 Direction Register
P0PU	ACH	R/W	00H	P0 Pull-up Resistor Selection Register
P0OD	91H	R/W	00H	P0 Open-drain Selection Register
P0DB	DEH	R/W	00H	P0 De-bounce Enable Register
P0FSRH	D3H	R/W	00H	P0 Function Selection High Register
P0FSRL	D2H	R/W	00H	P0 Function Selection Low Register
P1	88H	R/W	00H	P1 Data Register
P1IO	B1H	R/W	00H	P1 Direction Register
P1PU	ADH	R/W	00H	P1 Pull-up Resistor Selection Register
P10D	92H	R/W	00H	P1 Open-drain Selection Register
P1DB	DFH	R/W	00H	P1 Debounce Enable Register
P1FSRH	D5H	R/W	00H	P1 Function Selection High Register
P1FSRL	D4H	R/W	00H	P1 Function Selection Low Register
P2	90H	R/W	00H	P2 Data Register
P2IO	В9Н	R/W	00H	P2 Direction Register
P2PU	AEH	R/W	00H	P2 Pull-up Resistor Selection Register
P2OD	93H	R/W	00H	P2 Open-drain Selection Register
P2FSRH	D7H	R/W	00H	P2 Function Selection High Register
P2FSRL	D6H	R/W	00H	P2 Function Selection Low Register
P3	98H	R/W	00H	P3 Data Register
P3IO	99H	R/W	00H	P3 Direction Register
P3PU	AFH	R/W	00H	P3 Pull-up Resistor Selection Register
P3OD	94H	R/W	00H	P3 Open-drain Selection Register
P3FSRH	9BH	R/W	00H	P3 Function Selection High Register
P3FSRL	9AH	R/W	00H	P3 Function Selection Low Register

6.2 **P0** port

6.2.1 P0 port description

P0 is an 8-bit I/O port. P0 control registers consist of P0 data register (P0), P0 direction register (P0IO), debounce enable register (P0DB), P0 pull-up resistor selection register (P0PU), and P0 opendrain selection register (P0OD). Refer to the port function selection registers for the P0 function selection.

6.2.2 Register description for P0

P0 (P0 Data Register): 80H

7	6	5	4	3	2	1	0
_	P06	P05	P04	P03	P02	P01	P00
_	R/W						

Initial value: 00H

P0[6:0] I/O Data

P0IO (P0 Direction Register): A1H

7	6	5	4	3	2	1	0
-	P06IO	P05IO	P04IO	P03IO	P02IO	P01IO	P00IO
-	R/W						

Initial value: 00H

P0IO[6:0] P0 Data I/O Direction.

0 Input

1 Output

NOTE:

1. EINT0 to EINT4 function possible when input.

P0PU (P0 Pull-up Resistor Selection Register): ACH

7	6	5	4	3	2	1	0
_	P06PU	P05PU	P04PU	P03PU	P02PU	P01PU	P00PU
_	RW						

Initial value: 00H

P0PU[6:0] Configure Pull-up Resistor of P0 Port

0 Disable

1 Enable

P0OD (P0 Open-drain Selection Register): 91H

7	6	5	4	3	2	1	0
_	P06OD	P05OD	P04OD	P03OD	P02OD	P01OD	P00OD
_	R/W						

Initial value: 00H

P0OD[6:0] Configure Open-drain of P0 Port

0 Push-pull output

1 Open-drain output

P0DB (P0 De-bounce Enable Register): DEH

7	6	5	4	3	2	1	0
DBCLK1	DBCLK0	P35DB	P06DB	P05DB	P04DB	P03DB	P02DB
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

DBCLK[1:0]	Configure De-bounce Clock of Port						
	DBCLK1	DBCLK0	Description				
	0	0	fx/1				
	0	1	fx/4				
	1	0	fx/4096				
	1	1	LSI (128 kHz)				
P35DB	Configure D	e-bounce of Page	35 Port				
	0	Disable					
	1	Enable					
P06DB	Configure D	Configure De-bounce of P06 Port					
	0	Disable					
	1	Enable					
P05DB	Configure D	e-bounce of P	05 Port				
	0 Disable						
	1	Enable					
P04DB	Configure D	e-bounce of P	04 Port				
	0	Disable					
	1	Enable					
P03DB	Configure D	e-bounce of P	03Port				
	0	Disable					
	1	Enable					
P02DB	Configure De-bounce of P02 Port						
	0	Disable					
	1	Enable					

NOTES:

- 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.
- 2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.
- The port de-bounce is automatically disabled at stop mode and recovered after stop mode release.

P0FSRH (Port 0 Function Selection High Register): D3H

7	6	5	4	3	2	1	0
_	_	_	_	POFSRH3	P0FSRH2	P0FSRH1	P0FSRH0
_	_	_	_	RW	RW	RW	RW

Initial value: 00H

P0FSRH[3:2]	P06 Function Select						
	P0FSRH3	P0FSRH2	Description				
	0	0	I/O Port (EINT4 function possible when input)				
	0	1	T2O/PWM2O Function				
	1	0	AN6 Function				
	1	1	Reserved				
P0FSRH1	P05 Function	Select					
	0	I/O Port (EIN	NT3 function possible when input)				
	1	AN5 Function	n				
P0FSRH0	P04 Function	Select					
	0	I/O Port (EINT2 function possible when input)AN4 Function					
	1						

P0FSRL (Port 0 Function Selection Low Register): D2H

7	6	5	4	3	2	1	0
_	_	P0FSRL5	P0FSRL4	P0FSRL3	P0FSRL2	P0FSRL1	P0FSRL0
_	_	RW	RW	RW	RW	RW	RW

Initial value: 00H

P0FSRL[5:4]	P03 Function S	Select						
	P0FSRL5	P0FSRL4	Description					
	0	0	I/O Port(EINT1 function possible when input)					
	0	1	T1O/PWM1O Function					
	1	0	AN3 Function					
	1	1	Reserved					
P0FSRL[3:2]	P02 Function S	P02 Function Select						
	P0FSRL3	P0FSRL2	Description					
	0	0	I/O Port(EINT0 function possible when input)					
	0	1	Reserved					
	1	0	AN2 Function					
	1	1	Reserved					
P0FSRL1	P01 Function S	Select						
	0	I/O Port						
	1	AN1 Function	ı					
P0FSRL0	P00 Function S	Select						
	0	I/O Port						
	1	AN0 Function	1					

6.3 P1 port

6.3.1 P1 port description

P1 is an 8-bit I/O port. P1 control registers consist of P1 data register (P1), P1 direction register (P1IO), debounce enable register (P1DB), P1 pull-up resistor selection register (P1PU), andP1 opendrain selection register (P1OD). Refer to the port function selection registers for the P1 function selection.

6.3.2 Register description for P1

P1 (P1 Data Register): 88H

7	6	5	4	3	2	1	0
P17	P16	P15	P14	P13	P12	P11	P10
RW							

Initial value: 00H

P1[7:0] I/O Data

P1IO (P1 Direction Register): B1H

7	6	5	4	3	2	1	0
P1710	P16IO	P15IO	P14IO	P13IO	P12IO	P11IO	P10IO
RW							

Initial value: 00H

P1IO[7:0] P1 Data I/O Direction

0 Input

1 Output

NOTES:

- 1. EC1 (P11) function possible when input
- EC2 (P17) function is available only when P37 is not EC2 function and EC2 is used in TIMER2.

P1PU (P1 Pull-up Resistor Selection Register): ADH

7	6	5	4	3	2	1	0
P17PU	P16PU	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU
RW							

Initial value: 00H

P1PU[7:0] Configure Pull-up Resistor of P1 Port

0 Disable

1 Enable

P10D (P1 Open-drain Selection Register): 92H

7	6	5	4	3	2	1	0
P170D	P160D	P150D	P140D	P130D	P120D	P110D	P100D
RW							

Initial value: 00H

P1OD[7:0] Configure Open-drain of P1 Port

Push-pull output

Open-drain output

P12DB (P1/P2 De-bounce Enable Register): DFH

7	6	5	4	3	2	1	0
P23DB	P22DB	P21DB	P20DB	P13DB	P12DB	P11DB	P10DB
RW							

Initial value: 00H

P23_DB	Configure De-bounce of P23 Port
	0 Disable
	1 Enable
P22_DB	Configure De-bounce of P22 Port
	0 Disable
	1 Enable
P21_DB	Configure De-bounce of P21 Port
	0 Disable
	1 Enable
P20_DB	Configure De-bounce of P20 Port
	0 Disable
	1 Enable
P13_DB	Configure De-bounce of P13 Port
	0 Disable
	1 Enable
P12_DB	Configure De-bounce of P12 Port
	0 Disable
	1 Enable
P11_DB	Configure De-bounce of P11 Port
	0 Disable
	1 Enable
P10_DB	Configure De-bounce of P10 Port
	0 Disable
	1 Enable

NOTES:

- 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.
- 2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.
- The port de-bounce is automatically disabled at stop mode and recovered after stop mode release. 3.
- Refer to the port 0 de-bounce enable register (P0DB) for the de-bounce clock of port 1 and port 5.

P1FSRH (Port 1 Function Selection High Register): D5H

	7	6	5	4	3	2	1	0
	P1FSRH7	P1FSRH6	P1FSRH5	P1FSRH4	P1FSRH3	P1FSRH2	P1FSRH1	P1FSRH0
Ì	RW							

Initial value: 00H

P1FSRH[7:6]	P17 Function	Select	
	P1FSRH7	P1FSRH6	Description
	0	0	I/O Port (EC2 function possible when input)
	0	1	SS0 Function
	1	0	AN14 Function
	1	1	LED3 Function
P1FSRH[5:4]	P16 Function	Select	
	P1FSRH5	P1FSRH4	Description
	0	0	I/O Port
	0	1	XCK0 Function
	1	0	AN13 Function
	1	1	LED2 Function
P1FSRH[3:2]	P15 Function	Select	
	P1FSRH3	P1FSRH2	Description
	0	0	I/O Port
	0	1	TXD0/MOSI0 Function
	1	0	AN12 Function
	1	1	Reserved
P1FSRH[1:0]	P14 Function	Select	
	P1FSRH1	P1FSRH0	Description
	0	0	I/O Port
	0	1	RXD0/MISO0 Function
	1	0	AN11 Function
	1	1	Reserved

NOTES:

- 1. When using the LEDn function for high current driving, you must disable the LEDn function before making changes to set the port output to high or low.
- When using multiple ports for high current functions, it is not recommended to enable or disable multiple ports simultaneously. Because instantaneous changes in high current can cause MCU malfunction, you must control the interval between enabling or disabling each port for high current functions so that the intervals are sequential and not overlapping.

Example1) How to change the Output (L→ H) when using P17 ports as LED3

```
P1FSRH &= ~(3<<6); // LED3 Function is disabled.
Delay 2us // Stabilization time
P17 = 1; // P17 Output is set to High.
P1FSRH |= (3<<6); // LED3 Function is enabled.
```

Example1) How to change the Output (H > L) when using P17 ports as LED3

```
P1FSRH &= ~(3<<6); // LED3 Function is disabled.
Delay 2us // Stabilization time
P17 = 0; // P17 Output is set to Low.
P1FSRH |= (3<<6); // LED3 Function is enabled.
```


P1FSRL (Port 1 Function Selection Low Register): D4H

7	6	5	4	3	2	1	0
P1FSRL7	P1FSRL6	P1FSRL5	P1FSRL4	P1FSRL3	P1FSRL2	P1FSRL1	P1FSRL0
RW							

Initial value: 00H

P1FSRL[7:6]	P13 Functio	n Select	
	P1FSRL7	P1FSRL6	Description
	0	0	I/O Port (EINT12 function possible when input)
	0	1	T2O/PWM2O Function
	1	0	AN10 Function
	1	1	LED1 Function
P1FSRL[5:4]	P12 Functio	n Select	
	P1FSRL5	P1FSRL4	Description
	0	0	I/O Port (EINT11 function possible when input)
	0	1	T1O/PWM1O Function
	1	0	AN9 Function
	1	1	LED0 Function
P1FSRL[3:2]	P11 Functio	n Select	
	P1FSRL3	P1FSRL2	Description
	0	0	I/O Port (EC1/EINT6 function possible when input)
	0	1	BUZO Function
	1	0	AN8 Function
	1	1	Reserved
P1FSRL[1:0]	P10 Functio	n Select	
	P1FSRL1	P1FSRL0	Description
	0	0	I/O Port(EINT5 function possible when input)
	0	1	PWM1OB Function
	1	0	AN7 Function
	1	1	Reserved

NOTES:

- When using the LEDn function for high current driving, you must disable the LEDn function before making changes to set the port output to high or low.
- When using multiple ports for high current functions, it is not recommended to enable or disable multiple ports simultaneously. Because instantaneous changes in high current can cause MCU malfunction, you must control the interval between enabling or disabling each port for high current functions so that the intervals are sequential and not overlapping.

6.4 **P2** port

6.4.1 P2 port description

P2 is an 8-bit I/O port. P2 control registers consist of P2 data register (P2), P2 direction register (P2IO), P2 pull-up resistor selection register (P2PU) and P2 open-drain selection register (P2OD). Refer to the port function selection registers for the P2 function selection.

6.4.2 Register description for P2

P2 (P2 Data Register): 90H

7	6	5	4	3	2	1	0
_	P26	P25	P24	P23	P22	P21	P20
_	RW						

Initial value: 00H

P2[6:0] I/O Data

P2IO (P2 Direction Register): B9H

7	6	5	4	3	2	1	0
-	P26IO	P251O	P24IO	P231O	P221O	P21IO	P20IO
_	RW						

Initial value: 00H

P2IO[6:0]

P2 Data I/O Direction

0 Input

1 Output

NOTE:

 EC0 (P26) function is available only when P31 is not EC0 function and EC0 is used in TIMER0.

P2PU (P2 Pull-up Resistor Selection Register): AEH

7	6	5	4	3	2	1	0
_	P26PU	P25PU	P24PU	P23PU	P22PU	P21PU	P20PU
_	RW						

Initial value: 00H

P2PU[6:0] Configure Pull-up Resistor of P2 Port

0 Disable

1 Enable

P2OD (P2 Open-drain Selection Register): 93H

7	6	5	4	3	2	1	0
_	P260D	P25OD	P240D	P230D	P220D	P210D	P200D
_	RW						

Initial value: 00H

P2OD[6:0] Configure Open-drain of P2 Port

0 Push-pull output

1 Open-drain output

P2FSRL (Port 2 Function Selection Low Register): D6H

7	6	5	4	3	2	1	0
-	-	P2FSRL5	P2FSRL4	P2FSRL3	P2FSRL2	P2FSRL1	P2FSRL0
-	-	RW	RW	RW	RW	RW	RW

Initial value: 00H

P2FSRL5	P23 Function	Select					
	0	I/O Port (EIN	TA function possible when input)				
	1	LED7 Function	on				
P2FSRL[4:3]	P22 Function	Select					
	P2FSRL4	P2FSRL3	Description				
	0	0	I/O Port (EINT9 function possible when input)				
	0	1	XCK1 Function				
	1	0	Reserved				
	1	1	LED6 Function				
P2FSRL[2:1]	P21 Function	P21 Function Select					
	P2FSRL2	P2FSRL1	Description				
	0	0	I/O Port (EINT8 function possible when input)				
	0	1	SS1 Function				
	1	0	Reserved				
	1	1	LED5 Function				
P2FSRL4	P20 Function	Select					
	0	I/O Port (EIN	T7 function possible when input)				
	1	LED4 Function	on				

NOTES:

- 1. When using the LEDn function for high current driving, you must disable the LEDn function before making changes to set the port output to high or low.
- When using multiple ports for high current functions, it is not recommended to enable or disable multiple ports simultaneously. Because instantaneous changes in high current can cause MCU malfunction, you must control the interval between enabling or disabling each port for high current functions so that the intervals are sequential and not overlapping.

Example1) How to change the Output (L > H) when using P23 ports as LED7

```
P2FSRL &= ~(1<<5); // LED7 Function is disabled.
Delay 2us // Stabilization time
P23 = 1; // P23 Output is set to High.
P2FSRL |= (1<<5); // LED7 Function is enabled.
```

Example1) How to change the Output (H L) when using P23 ports as LED7

```
P2FSRL &= ~(1<<5); // LED7 Function is disabled.
Delay 2us // Stabilization time
P23 = 0; // P23 Output is set to Low.
P2FSRL |= (1<<5); // LED7 Function is enabled.
```


P2FSRH (Port 2 Function Selection High Register): D7H

7	6	5	4	3	2	1	0
-	-	-	-	P2FSRH3	P2FSRH2	P2FSRH1	P2FSRH0
-	-	-	-	RW	RW	RW	RW

Initial value: 00H

P2FSRH[3:2]	P25 Functio	n Select	
	P2FSRH3	P2FSRH2	Description
	0	0	I/O Port
	0	1	RXD1/MISO1 Function
	1	0	SCL Function
	1	1	Reserved
P2FSRH[1:0]	P24 Functio	n Select	
	P2FSRH1	P2FSRH0	Description
	0	0	I/O Port
	0	1	TXD1/MOSI1 Function
	1	0	SDA Function
	1	1	Reserved

6.5 **P3** port

6.5.1 P3 port description

P3 is an 8-bit I/O port. P3 control registers consist of P3 data register (P3), P3 direction register (P3IO) and P3 pull-up resistor selection register (P3PU). Refer to the port function selection registers for the P3 function selection.

6.5.2 Register description for P3

P3 (P3 Data Register): 98H

7	6	5	4	3	2	1	0
P37	P36	P35	P34	P33	P32	P31	P30
RW							

Initial value: 00H

P3[7:0] I/O Data

P3IO (P3 Direction Register): 99H

7	6	5	4	3	2	1	0
P371O	P36IO	P351O	P34IO	P33IO	P32IO	P31IO	P30IO
RW							

Initial value: 00H

P3IO[7:0] P3 Data I/O Direction

0 Input

1 Output

P3PU (P3 Pull-up Resistor Selection Register): AFH

7	6	5	4	3	2	1	0
P37PU	P36PU	P35PU	P34PU	P33PU	P32PU	P31PU	P30PU
RW							

Initial value: 00H

P3PU[7:0] Configure Pull-up Resistor of P3 Port

0 Disable

1 Enable

P3OD (P3 Open-drain Selection Register): 94H

	7	6	5	4	3	2	1	0
ſ	P370D	P360D	P350D	P340D	P330D	P320D	P310D	P30OD
Ī	RW							

Initial value: 00H

P3OD[7:0] Configure Open-drain of P3 Port

0 Push-pull output1 Open-drain output

P3FSRH (Port 3 Function Selection High Register): 9BH

7	6	5	4	3	2	1	0
-	-	-	-	-	P3FSRH2	P3FSRH1	P3FSRH0
-	-	-	-	-	RW	RW	RW

Initial value: 00H

P3FSRH2 P37 Function select

0 I/O Port

1 XOUT Function

P3FSRH1 P36 Function Select

) I/O Port

1 XIN Function

P3FSRH0 P35 Function select

0 I/O Port (EINT10 function possible when input)

1 T0O/PWM0O Function

P3FSRL (Port 3 Function Selection Low Register): 9AH

7	6	5	4	3	2	1	0
-	P3FSRL6	P3FSRL5	P3FSRL4	P3FSRL3	P3FSRL2	P3FSRL1	P3FSRL0
-	RW						

Initial value: 00H

P3FSRL6	P34 Function	select				
	0	I/O Port				
	1	SXIN Function				
P3FSRL5	P33 Function	Select				
	0	I/O Port				
	1	SXOUT Functi	on			
P3FSRL4	P32 Function	select				
	0	I/O Port				
	1	1 T0O/PWM0O Function				
P3FSRL[3:2]	P31 Function select					
	P3FSRL3	P3FSRL2	Description			
	0	0	I/O Port			
	0	1	RXD1/MISO1 Function			
	1	0	SCL Function			
	1	1	EC0 Function			
P3FSRL[1:0]	P30 Function	select				
	P3FSRL1	P3FSRL0	Description			
	0	0	I/O Port			
	0	1	TXD1/MOSI1 Function			
	1	0	SDA Function			
	1	1	EC2 Function			

7. Interrupt controller

A96G166/A96A166/A96S166 supports up to 21 interrupt sources. The interrupts have separate enable register bits associated with them, allowing software control. In addition, they have four levels of priority assigned to themselves.

A non-maskable interrupt source is always enabled with a higher priority than any other interrupt sources, and is not controllable by software.

Interrupt controller of A96G166/A96A166/A96S166 has following features:

- Request receive from the 21interrupt sources
- 6 groups of priority
- 4 levels of priority
- Multi Interrupt possibility
- A request of higher priority level is served first, when multiple requests of different priority levels are received simultaneously.
- Each interrupt source can be controlled by EA bit and each IEx bit
- Interrupt latency of 3 to 9 machine cycles in single interrupt system

A non-maskable interrupt is always enabled, while maskable interrupts are enabled through four pairs of interrupt enable registers (IE, IE1, IE2, and IE3). Each bit of IE, IE1, IE2, IE3 register individually enables/disables the corresponding interrupt source. Overall control is provided by bit 7 of IE (EA). When EA is set to '0', all interrupts are disabled: when EA is set to '1', interrupts are individually enabled or disabled through the other bits of the interrupt enable registers. The EA bit is always cleared to '0' jumping to an interrupt service vector and set to '1' executing the [RETI] instruction. The A96G166/A96S166 supports a four-level priority scheme. Each maskable interrupt is individually assigned to one of four priority levels according to IP and IP1.

Default interrupt mode is level-trigger mode basically, but if needed, it is possible to change to edge-trigger mode. Figure 16 shows the Interrupt Group Priority Level that is available for sharing interrupt priority. Priority of a group is set by two bits of interrupt priority registers (one bit from IP, another one from IP1). Interrupt service routine serves higher priority interrupt first. If two requests of different priority levels are received simultaneously, the request of higher priority level is served prior to the lower one.

Interrupt Group	Highest			Lowest	
0 (Bit0)	Interrupt 0	Interrupt 6	Interrupt 12	Interrupt 18	Highest
1 (Bit1)	Interrupt 1	Interrupt 7	Interrupt 13	Interrupt 19	
2 (Bit2)	Interrupt 2	Interrupt 8	Interrupt 14	Interrupt 20	
3 (Bit3)	Interrupt 3	Interrupt 9	Interrupt 15	Interrupt 21	
4 (Bit4)	Interrupt 4	Interrupt 10	Interrupt 16	Interrupt 22	
5 (Bit5)	Interrupt 5	Interrupt 11	Interrupt 17	Interrupt 23	Lowest

Figure 16. Interrupt Group Priority Level

7.1 External interrupt

EINT0, EINT1, EINT2, EINT3, EINT4, EINT5, EINT6, EINT7, EINT8, EINT9, EINTA, EINT10, EINT11 and EINT12 pins receive various interrupt requests depending on the external interrupt polarity register (EIPOL) as shown in Figure 17. Each external interrupt source has enable/disable bits.

The external interrupt flag register (EIFLAG) provides the status of external interrupts.

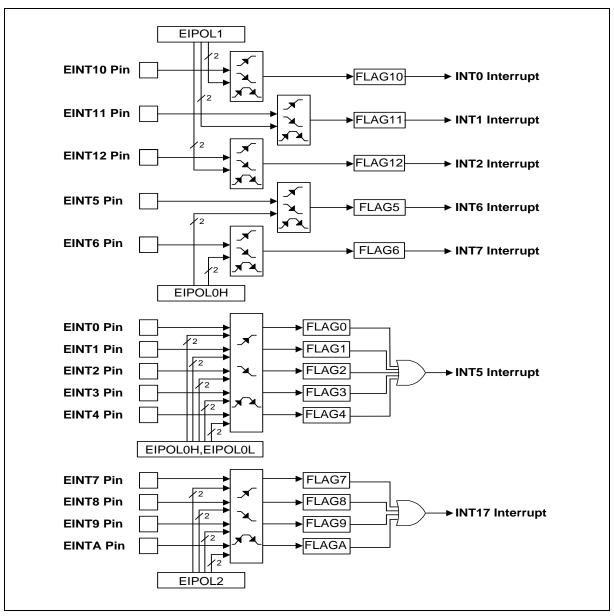


Figure 17. External Interrupt Description

7.2 Block diagram

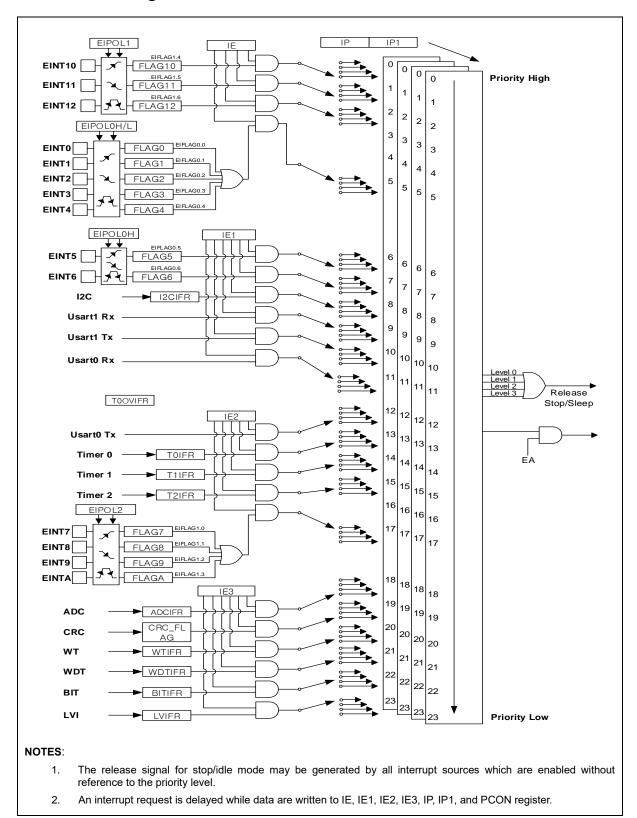


Figure 18. Interrupt Controller Block Diagram

7.3 Interrupt vector table

Interrupt controller of A96G166/A96A166/A96S166 supports 21 interrupt sources as shown in Table 8. When interrupt is served, long call instruction (LCALL) is executed and program counter jumps to the vector address. All interrupt requests have their own priority order.

Table 8. Interrupt Vector Address Table

Table 6. Interrupt Vector Address Table									
Interrupt source	Symbol	Interrupt Enable Bit	Priority	Mask	Vector address				
Hardware Reset	RESETB	_	0	Non-Maskable	0000H				
External Interrupt 10	INT0	IE.0	1	Maskable	0003H				
External Interrupt 11	INT1	IE.1	2	Maskable	000BH				
External Interrupt 12	INT2	IE.2	3	Maskable	0013H				
-	INT3	IE.3	4	Maskable	001BH				
-	INT4	IE.4	5	Maskable	0023H				
External Interrupt 0-4	INT5	IE.5	6	Maskable	002BH				
External Interrupt 5	INT6	IE1.0	7	Maskable	0033H				
External Interrupt 6	INT7	IE1.1	8	Maskable	003BH				
I2C Interrupt	INT8	IE1.2	9	Maskable	0043H				
USART1 RX Interrupt	INT9	IE1.3	10	Maskable	004BH				
USART1 TX Interrupt	INT10	IE1.4	11	Maskable	0053H				
USART0 RX Interrupt	INT11	IE1.5	12	Maskable	005BH				
USART0 TX Interrupt	INT12	IE2.0	13	Maskable	0063H				
T0 Match Interrupt	INT13	IE2.1	14	Maskable	006BH				
T1 Match Interrupt	INT14	IE2.2	15	Maskable	0073H				
T2 Match Interrupt	INT15	IE2.3	16	Maskable	007BH				
-	INT16	IE2.4	17	Maskable	0083H				
External Interrupt 7-A	INT17	IE2.5	18	Maskable	008BH				
ADC Interrupt	INT18	IE3.0	19	Maskable	0093H				
CRC Interrupt	INT19	IE3.1	20	Maskable	009BH				
WT Interrupt	INT20	IE3.2	21	Maskable	00A3H				
WDT Interrupt	INT21	IE3.3	22	Maskable	00ABH				
BIT Interrupt	INT22	IE3.4	23	Maskable	00B3H				
LVI Interrupt	INT23	IE3.5	24	Maskable	00BBH				

For maskable interrupt execution, EA bit must set '1' and specific interrupt must be enabled by writing '1' to associated bit in the IEx. If an interrupt request is received, the specific interrupt request flag is set to '1'.

And it remains '1' until CPU accepts interrupt. If the interrupt is served, the interrupt request flag will be cleared automatically.

7.4 Interrupt sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to '0' by a reset or an instruction. Interrupt acceptance always generates at last cycle of the instruction. So instead of fetching the current instruction, CPU executes internally LCALL instruction and saves the PC at stack.

For the interrupt service routine, the interrupt controller gives the address of LJMP instruction to CPU. Since the end of the execution of current instruction, it needs 3 to 9 machine cycles to go to the interrupt service routine. The interrupt service task is terminated by the interrupt return instruction [RETI]. Once an interrupt request is generated, the following process is performed.

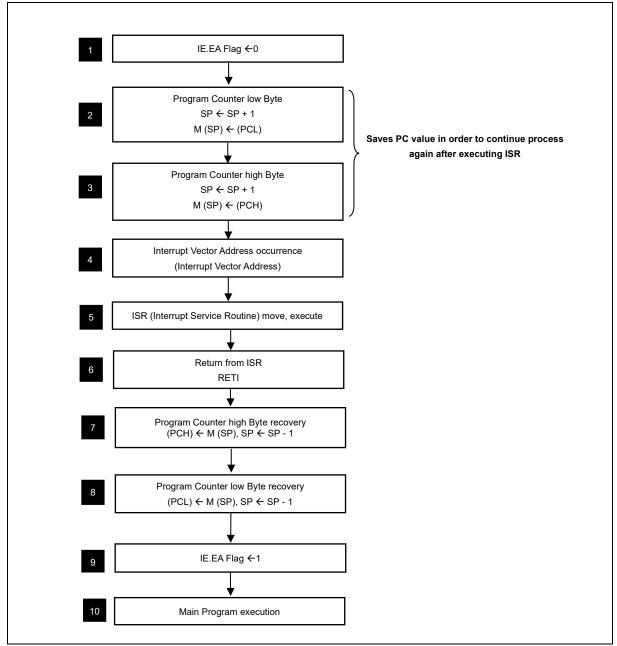


Figure 19. Interrupt Sequence Flow

7.5 Effective timing after controlling interrupt bit

Case A in Figure 20 shows the effective time after controlling the Interrupt Enable Registers (IE, IE1, IE2, and IE3).

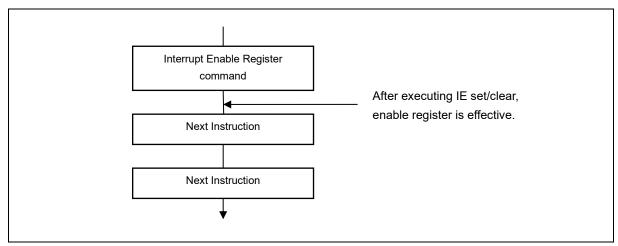


Figure 20. Case A: Effective Timing of Interrupt Enable Register

Case B in Figure 21 shows the effective time after controlling Interrupt Flag Registers.

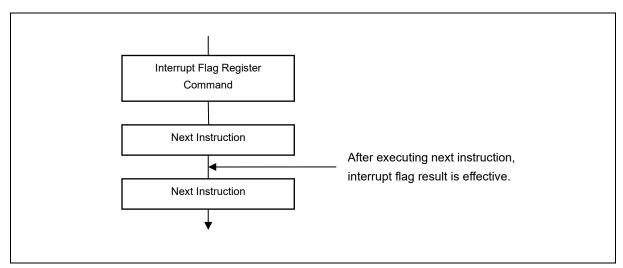


Figure 21. Case B: Effective Timing of Interrupt Flag Register

7.6 Multi-interrupt

If two requests of different priority levels are received simultaneously, the request of higher priority level is served first. If more than one interrupt request are received, the interrupt polling sequence determines which request is served first by hardware. However, for special features, multi-interrupt processing can be executed by software.

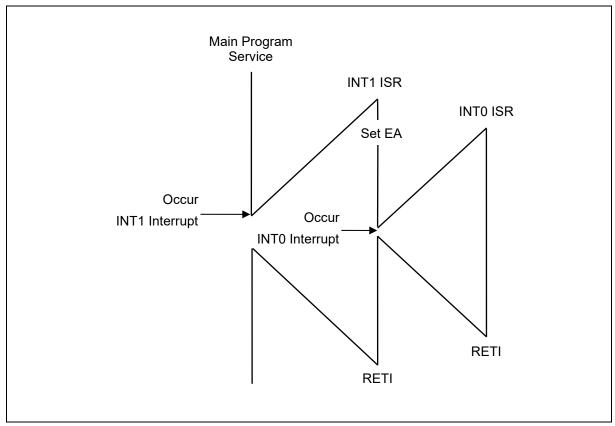


Figure 22. Effective Timing of Multi-Interrupt

Figure 22 shows an example of multi-interrupt processing. While INT1 is served, INT0 which has higher priority than INT1 is occurred. Then INT0 is served immediately and then the remaining part of INT1 service routine is executed. If the priority level of INT0 is same or lower than INT1, INT0 will be served after the INT1 service has completed.

An interrupt service routine may be only interrupted by an interrupt of higher priority and, if two interrupts of different priority occur at the same time, the higher level interrupt will be served first. An interrupt cannot be interrupted by another interrupt of the same or a lower priority level. If two interrupts of the same priority level occur simultaneously, the service order for those interrupts is determined by the scan order.

7.7 Interrupt enable accept timing

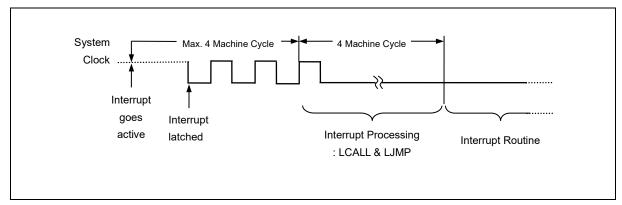


Figure 23. Interrupt Response Timing Diagram

7.8 Interrupt service routine address

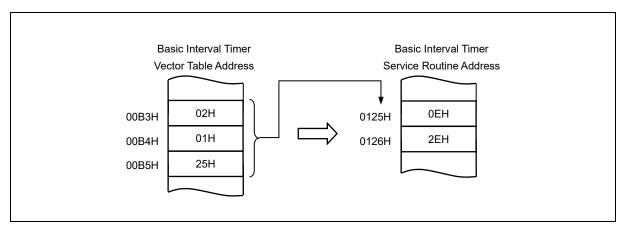


Figure 24. Correspondence between Vector Table Address and Entry Address of ISR

7.9 Saving/restore general purpose registers

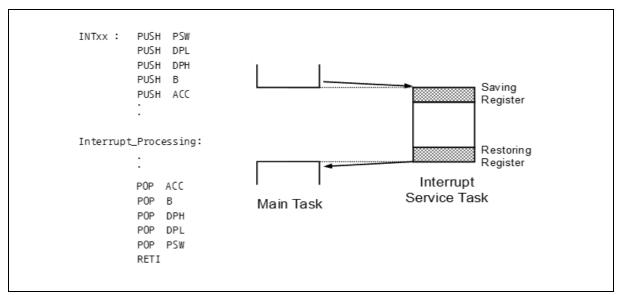


Figure 25. Saving/Restore Process Diagram and Sample Source

7.10 Interrupt timing

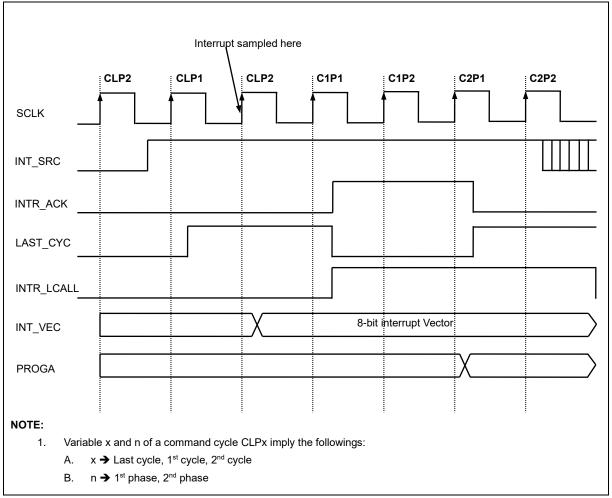


Figure 26. Timing Chart of Interrupt Acceptance and Interrupt Return Instruction

Interrupt sources are sampled at the last cycle of a command. If an interrupt source is detected the lower 8-bit of interrupt vector (INT_VEC) is decided. M8051W core makes interrupt acknowledge at the first cycle of a command, and executes long call to jump to interrupt service routine.

7.11 Interrupt register overview

7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3)

Interrupt enable register consists of global interrupt control bit (EA) and peripheral interrupt control bits. Total 21 peripherals are able to control interrupt.

7.11.2 Interrupt Priority Register (IP and IP1)

21 interrupts are divided into 2 groups which have 4 interrupt sources respectively. A group can be assigned to 4 levels of interrupt priority using interrupt priority register. Level 3 is the highest priority, while level 0 is the lowest priority.

After a reset, IP and IP1 are cleared to '00H'. If interrupts have the same priority level, lower number interrupt is served first.

7.11.3 External Interrupt Flag Register (EIFLAG0 and EIFLAG1)

External Interrupt Flag 0 Register (EIFLAG0) and External Interrupt Flag 1 Register (EIFLAG1) are set to '1' when the external interrupt generating condition is satisfied. These flags are cleared when the interrupt service routine is executed. Alternatively, these flags can be cleared by writing '0' on to themselves.

7.11.4 External Interrupt Polarity Register (EIPOL0L, EIPOL0H, EIPOL1 and EIPOL2)

External Interrupt Polarity0 high/low Register (EIPOL0H/L), External Interrupt Polarity1 Register (EIPOL1) and External Interrupt Polarity2 Register (EIPOL2) determines an edge type from rising edge, falling edge, and both edges of interrupt. Initially, default value is no interrupt at any edge.

7.11.5 Register map

Table 9. Interrupt Register Map

Name	Address Direction Default		Default	Description
IE	A8H	R/W	00H	Interrupt Enable Register
IE1	А9Н	R/W	00H	Interrupt Enable Register 1
IE2	AAH	R/W	00H	Interrupt Enable Register 2
IE3	ABH	R/W	00H	Interrupt Enable Register 3
IP	В8Н	R/W	00H	Interrupt Priority Register
IP1	F8H	R/W	00H	Interrupt Priority Register 1
EIFLAG0	C0H	R/W	00H	External Interrupt Flag 0 Register
EIPOL0L	A4H	R/W	00H	External Interrupt Polarity 0 Low Register
EIPOL0H	A5H	R/W	00H	External Interrupt Polarity 0 High Register
EIFLAG1	A6H	R/W	00H	External Interrupt Flag 1 Register
EIPOL1	A7H	R/W	00H	External Interrupt Polarity 1 Register
EIPOL2	АЗН	R/W	00H	External Interrupt Polarity 2 Register

7.11.6 Interrupt register description

IE (Interrupt Enable Register): A8H

7	6	5	4	3	2	1	0
EA	_	INT5E	_	_	INT2E	INT1E	INT0E
R/W	_	R/W	_	-	R/W	R/W	R/W

Initial value: 00H

EA	Enable	or Disable All Interrupt bits
	0	All Interrupt disable
	1	All Interrupt enable
INT5E	Enable	or Disable External Interrupt 0 ~ 4 (EINT0 ~ EINT4)
	0	Disable
	1	Enable
INT2E	Enable	or Disable External Interrupt 12 (EINT12)
	0	Disable
	1	Enable
INT1E	Enable	or Disable External Interrupt 11(EINT11)
	0	Disable
	1	Enable
INT0E	Enable	or Disable External Interrupt 10 (EINT10)
	0	Disable
	1	Enable

IE1 (Interrupt Enable Register 1): A9H

7	6	5	4	3	2	1	0
_	-	INT11E	INT10E	INT9E	INT8E	INT7E	INT6E
_	_	R/W	R/W	R/W	R/W	R/W	R/W

_	_	FX/ V V	IX/VV	IN/VV	17/ / /	IN/ V V	IN/VV
						Initial	value: 00H
		INT11E	Enable	or Disable USAR	T0 RX Interrup	ot	
			0	Disable			
			1	Enable			
		INT10E	Enable	or Disable USAR	T1 TX Interrup	ot	
			0	Disable			
			1	Enable			
		INT9E	Enable	or Disable USAR	T1 RX Interrup	ot	
			0	Disable			
			1	Enable			
		INT8E		or Disable I2C Int	errupt		
			0	Disable			
			1	Enable			
		INT7E		or Disable Extern	al Interrupt 6 ((EINT6)	
			0	Disable			
		INITOE	1	Enable		(EINITE)	
		INT6E		or Disable Extern	al Interrupt 5 (EIN15)	
			0	Disable			
			1	Enable			

IE2 (Interrupt Enable Register 2): AAH

7	6	5	4	3	2	1	0
-	_	INT17E	_	INT15E	INT14E	INT13E	INT12E
_	_	RW	_	RW	RW	RW	RW

Initial value: 00H

INT17E Enable or Disable External Interrupt 7 ~ A (EINT7 ~ EINTA)

0 Disable

1 Enable

INT15E Enable or Disable Timer 2 Match Interrupt

0 Disable1 Enable

INT14E Enable or Disable Timer 1 Match Interrupt

0 Disable1 Enable

INT13E Enable or Disable Timer 0 Match Interrupt

0 Disable1 Enable

INT12E Enable or Disable USART0 TX Interrupt

0 Disable1 Enable

IE3 (Interrupt Enable Register 3): ABH

7	6	5	4	3	2	1	0
_	_	INT23E	INT22E	INT21E	INT20E	INT19E	INT18E
_	-	RW	RW	RW	RW	RW	RW

Initial value: 00H

INT23E Enable or Disable LVI Interrupt

0 Disable1 Enable

INT22E Enable or Disable BIT Interrupt

0 Disable1 Enable

INT21E Enable or Disable WDT Interrupt

Disable Enable

INT20E Enable or Disable WT Interrupt

Disable
Enable

INT19E Enable or Disable CRC Interrupt

0 Disable1 Enable

INT18E Enable or Disable ADC Interrupt

0 Disable1 Enable

IP (Interrupt Priority Register): B8H

7	6	5	4	3	2	1	0
_	_	IP5	IP4	IP3	IP2	IP1	IP0
_	_	RW	RW	RW	RW	RW	RW

Initial value: 00H

IP1 (Interrupt Priority Register 1): F8H

7	6	5	4	3	2	1	0
_	_	IP15	IP14	IP13	IP12	IP11	IP10
_	_	RW	RW	RW	RW	RW	RW

Initial value: 00H

IP[5:0], IP1[5:0] Select Interrupt Group Priority

IP1x IPx Description
0 0 level 0 (lowest)
0 1 level 1
1 0 level 2
1 1 level 3 (highest)

EIFLAG0 (External Interrupt Flag0 Register): C0H

7	6	5	4	3	2	1	0
_	FLAG6	FLAG5	FLAG4	FLAG3	FLAG2	FLAG1	FLAG0
_	RW						

Initial value: 00H

EIFLAG0[6:5] When an External Interrupt 5 ~ 6 occurs, the flag becomes '1'.

The flag is cleared only by writing '0' to the bit or automatically cleared by INT_ACK signal. Writing "1" has no effect.

0 External interrupt 5 ~ 6 not occurred

1 External interrupt 5 ~ 6 occurred

EIFLAG0[4:0] When an External Interrupt 0 ~ 4 occurs, the flag becomes '1'.

The flag is cleared only by writing '0' to the bit. So, the flag should be cleared by software. Writing "1" has no effect.

0 External interrupt 0 ~ 4 not occurred

1 External interrupt 0 ~ 4 occurred

EIPOL0L (External Interrupt Polarity 0Low Register): A4H

7	6	5	4	3	2	1	0	
PC	POL3		POL2		POL1		POL0	
RW	RW	RW	RW	RW	RW	RW	RW	

Initial value: 00H

EIPOL0L[7:0] External interrupt (EINT3, EINT2, EINT1, EINT0) polarity selection

POLn[1:0] Description
0 0 No interrupt at any edge
0 1 Interrupt on rising edge
1 0 Interrupt on falling edge
1 1 Interrupt on both of rising and falling edge

Where n = 0, 1, 2 and 3

EIPOL0H (External Interrupt Polarity 0High Register): A5H

7	6	5	4	3	2	1	0	
	_		POL6		POL5		POL4	
_	-	RW	RW	RW	RW	RW	RW	

Initial value: 00H

EIPOL0H[7:0] External interrupt (EINT6, EINT5, EINT4) polarity selection

POLn[1:0] Description
0 0 No interrupt at any edge
0 1 Interrupt on rising edge
1 0 Interrupt on falling edge
1 1 Interrupt on both of rising and falling edge

Where n = 4, 5 and 6

EIFLAG1 (External Interrupt Flag 1 Register): A6H

	7	6	5	4	3	2	1	0		
	T0IFR	FLAG12	FLAG11	FLAG10	FLAGA	FLAG9	FLAG8	FLAG7		
Ī	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
								l value: 00H		
		TOIFR		When T0 interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or auto clear by INT_ACK signal. Writing "1" has no effect.						

T0 interrupt no generationT0 interrupt generation

EIFLAG1[6:4] When an External Interrupt 10 ~ 12 is occurred, the flag becomes '1'. The flag is cleared only by writing '0' to the bit or automatically cleared by INT_ACK signal. Writing "1" has no effect.

0 External interrupt 10 ~ 12 not occurred 1 External interrupt 10 ~ 12 occurred

EIFLAG0[4:0] When an External Interrupt 7 ~ A is occurred, the flag becomes '1'. The flag is cleared only by writing '0' to the bit. So, the flag should be cleared by software. Writing "1" has no effect.

External interrupt 7 ~ A not occurred
 External interrupt 7 ~ A occurred

EIPOL1 (External Interrupt Polarity 1 Register): A7H

7	6	5	4	3	2	1	0	
-	-	POI	POL12		POL11		POL10	
-	-	RW	RW	RW	RW	RW	RW	

Initial value: 00H

			Initial value: 00H					
EIPOL1[5:0	D] Exte	External interrupt (EINT12,EINT11,EINT10) polarity selection						
	POL	.n[1:0]	Description					
	0	0	No interrupt at any edge					
	0	1	Interrupt on rising edge					
	1	0	Interrupt on falling edge					
	1	1	Interrupt on both of rising and falling edge					
	Whe	Where n =10, 11 and 12						

EIPOL2 (External Interrupt Polarity 2 Register): A3H

7	6	5	4	3	2	1	0
PC	POLA POL9		POL8		POL7		
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

EIPOL2[7:0]	EIPOL2[7:0] External interrupt (EINTA, EINT9, EINT8, EINT7) polari						
	POLn[1:	0]	Description				
	0	0	No interrupt at any edge				
	0	1	Interrupt on rising edge				
	1	0	Interrupt on falling edge				
1 1 Interi		1	Interrupt on both of rising and falling edge				
	Where n	Where n =7, 8, 9 and A					

8. Clock generator

As shown in Figure 27, a clock generator produces basic clock pulses which provide a system clock for CPU and peripheral hardware.

It contains main/sub-frequency clock oscillator. The main/sub clock can operate easily by attaching a crystal between the XIN/SXIN and XOUT/SXOUT pin, respectively. The main/sub clock can be also obtained from the external oscillator. For this, it is necessary to place external clock signal into the XIN/SXIN pin and open XOUT/SXOUT pin.

Default system clock is 16 MHz INT-RC Oscillator. To stabilize the system internally, 128 kHz LOW INT-RC oscillator on POR is recommended.

Oscillators in the clock generator are introduced in the followings:

- Calibrated high internal RC oscillator (32 MHz)
 - HSI OSC/2 (16 MHz, default system clock)
 - HSI OSC/4 (8 MHz)
 - HSI OSC/8 (4 MHz)
 - HSI OSC/16 (2 MHz)
 - HSI OSC/32 (1 MHz)
 - HSI OSC/64 (0.5 MHz)
- Main crystal oscillator (0.4~12 MHz)
- Sub-crystal Oscillator (32.768 kHz)
- Internal LSI oscillator (128 kHz)

8.1 Clock generator block diagram

In this section, a clock generator of A96G166/A96A166/A96S166 is described in a block diagram.

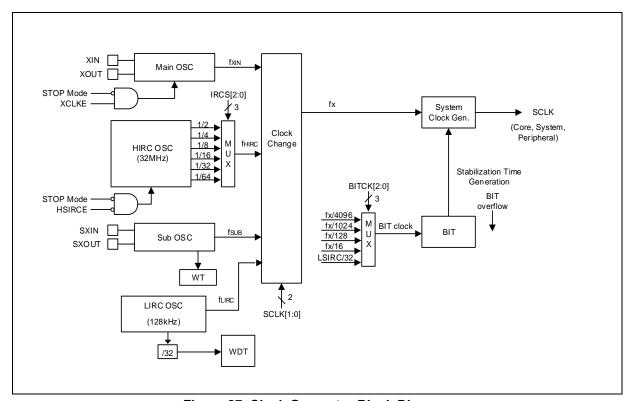


Figure 27. Clock Generator Block Diagram

8.2 Register map

Table 10. Clock Generator Register Map

	=					
Name	NameAddressDirectionDefaultSCCR8AHR/W00H		Default	Description		
SCCR			00H	System and Clock Control Register		
OSCCR	C8H	R/W	28H	Oscillator Control Register		
XTFLSR	1038H	R/W	00H	Main Crystal OSC Filter Selection Register		

8.3 Register description

SCCR (System and Clock Control Register): 8AH

7	6	5	4	3	2	1	0
_	_	_	_	_	-	SCLK1	SCLK0
_	_	_	_	_	_	RW	RW

Initial value: 00H

SCLK [1:0]	System (System Clock Selection Bit				
	SCLK1	SCLK0	Description			
	0	0	Internal 32 MHz RC OSC (f _{HSI}) for system clock			
	0	1	External Main OSC (fxin) for system clock			
	1	0	External Sub OSC (f _{SUB}) for system clock			
	1	1	Internal 128 kHz RC OSC (fuer) for system clock			

OSCCR (Oscillator Control Register): C8H

7	6	5	4	3	2	1	0
_	LSIE	IRCS2	IRCS1	IRCS0	HSIE	XCLKE	SCLKE
_	RW	RW	RW	RW	RW	RW	RW

Initial value: 28H

LSIE	Control t		Operation of the Low Frequency (128 kHz) internal RC Oscillator				
	0		ble operation	on of LSI OSC			
	1	Enak	ole operatio	n of LSI OSC			
IRCS[2:0]	Internal	RC Oscillat	or Post-divi	der Selection			
	IRCS2	IRCS1	IRCS0	Description			
	0	0	0	INT-RC/64 (0.5 MHz)			
	0	0	1	INT-RC/32 (1 MHz)			
	0	1	0	INT-RC/16 (2 MHz)			
	0	1	1	INT-RC/8 (4 MHz)			
	1	0	0	INT-RC/4 (8 MHz)			
	1	0	1	INT-RC/2 (16 MHz)			
	1	1	0	Test only			
	Other Va	alues		reserved			
HSIE	Control to Oscillato		on of the Hi	gh Frequency (32 MHz) Internal RC			
	0	Enak	ole operatio	n of HSI OSC			
	1	Disa	ble operation	on of HSI OSC			
XCLKE	Control t	he Operation	on of the Ex	cternal Main Oscillator			
	0	Disa	ble operation	on of X-TAL			
	1	Enak	Enable operation of X-TAL				
SCLKE	Control t	he Operation	peration of the External Sub Oscillator				
	0	Disa	ble operation	on of SX-TAL			
	1	Enak	ole operatio	n of SX-TAL			

XTFLSR (Main Crystal OSC Filter Selection Register): 1038H

	7	6	5	4	3	2	1	0
	NFSEL1	NFSEL0	MX_FIL_DIS	MX_ISEL1	MX_ISEL0	SUB_FIL_DIS	SUB_ISEL1	SUB_ISEL0
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Initial value: 00H

NFSEL[1:0]	Noise Filter S	elective Option	
	NFSEL1	NFSEL0	Description
	0	0	18ns (Default, 12 MHz)
	0	1	22ns (12 MHz)
	1	0	26ns (8 MHz)
	1	1	30ns (4 MHz)
MX_FIL_DIS	Main X-TAL n	oise canceller s	selection.
	0	Using noise t	filter
	1	Bypass noise	e filter
MX_ISEL[1:0]	Current selec	tive option for M	1X-TAL
	MX_ISEL1	MX_ISEL0	Description
	0	0	HIGH (~12M)
	0	1	MID-HIGH (8~12M)
	1	0	MID-LOW (4~8M)
	1	1	LOW (~4M)
SUB_FIL_DIS	SUB X-TAL n	oise canceller s	election.
	0	Using noise t	filter
	1	Bypass noise	e filter
SUB_ISEL[1:0]	Current selec	tive option for S	UB-TAL
	SUB_ISEL1	SUB_ISEL0	Description
	0	0	Low
	0	1	Mid-Low
	1	0	Mid-High
	1	1	High (When using fast Start-up)

NOTE:

1. The External Main Oscillator Range (XRNS) should be changed while the system clock is selected as IRC

9. Basic Interval Timer

A96G166/A96A166/A96S166 has a free running 8-bit Basic Interval Timer (BIT). The BIT generates the time base for watchdog timer counting, and provides a basic interval timer interrupt (BITIFR).

BIT of A96G166/A96A166/A96S166 features the followings:

- During Power On, BIT gives a stable clock generation time
- On exiting Stop mode, BIT gives a stable clock generation time
- As a timer, BIT generates a timer interrupt.

9.1 BIT block diagram

In this section, basic interval timer of A96G166/A96A166/A96S166 is described in a block diagram.

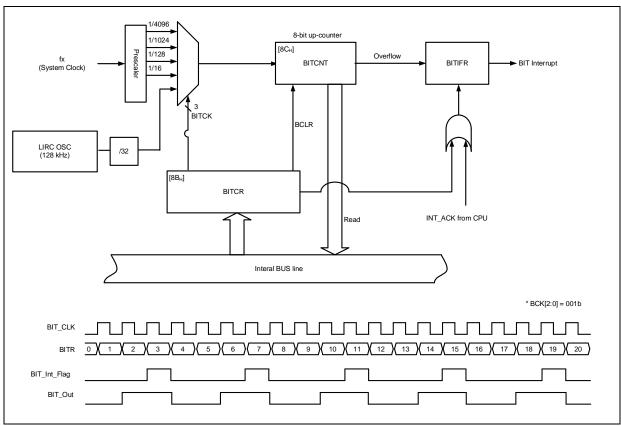


Figure 28. Basic Interval Timer Block Diagram

9.2 BIT register map

Table 11. Basic Interval Timer Register Map

Name Address Direction		Direction	Default	Description
BITCNT	8CH R		00H Basic Interval Timer Counter Reg	
BITCR	8BH	R/W	45H	Basic Interval Timer Control Register

9.3 BIT register description

BITCNT (Basic Interval Timer Counter Register): 8CH

7	6	5	4	3	2	1	0
BITCNT7	BITCNT6	BITCNT5	BITCNT4	BITCNT3	BITCNT2	BITCNT1	BITCNT0
R	R	R	R	R	R	R	R

Initial value: 00H

BITCNT[7:0] BIT Counter

BITCR (Basic Interval Timer Control Register): 8BH

7	6	5	4	3	2	1	0
BMFR	BITCK2	BITCK1	BITCK0	BCLR	BCK2	BCK1	BCK0
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 45H

				miliai value: 45H
BITIFR				t becomes '1'. For clearing bit, write ACK signal. Writing "1" has no
	0	BIT interrup	t no genera	tion
	1	BIT interrup	t generation	า
BITCK[2:0]	Select BIT	clock source	e	
	BITCK2	BITCK1	BITCK0	Description
	0	0	0	fx/4096
	0	0	1	fx/1024
	0	1	0	fx/128
	0	1	1	fx/16
	1	Other Value	es	LSI/32 (Default)
BCLR	If this bit is	s written to "	1', BIT Cour	nter is cleared to '0'
	0	Free Runni	ng	
	1	Clear Coun	ter	
BCK[2:0]	Select BIT	overflow pe	eriod	
	BCK2	BCK1	BCK0	Description (fx=LSI 128k)
	0	0	0	0.5ms (BIT Clock * 2)
	0	0	1	1ms (BIT Clock * 4)
	0	1	0	2ms (BIT Clock * 8)
	0	1	1	4ms (BIT Clock * 16)
	1	0	0	8ms (BIT Clock * 32)
	1	0	1	16ms (BIT Clock * 64) (default)
	1	1	0	32ms (BIT Clock * 128)
	1	1	1	64ms (BIT Clock * 256)

10. Watchdog timer

Watchdog timer rapidly detects malfunction of the CPU such as endless looping caused by noise, and returns the CPU to the normal state. The watchdog timer signal for malfunction detection can be used for either a CPU reset or an interrupt request.

When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals. When the overflow time reaches 75%, a watchdog interrupt can be generated. The overflow time of the watchdog timer can be selected by WDTOVF[2:0] of WDTCR. If the overflow occurs, an internal reset is generated.

The WDTRC operation in the STOP/IDLE mode differs depending on the WDTPDON settings. If WDTPDON = 0, the WDTRC operation stops in the STOP/IDLE mode, while the WDTRC operates if WDTPDON = 1. The watchdog timer operates at 4 kHz, based on the ring oscillator clock of 128 kHz.

Watchdog reset occurs in the following cases:

- · When the watchdog timer counter overflows
- When the data except "96H" is written to the WDTC register
- When the data "96H" is written to the WDTC register during the window close period.

10.1 Setting window open period of watchdog timer

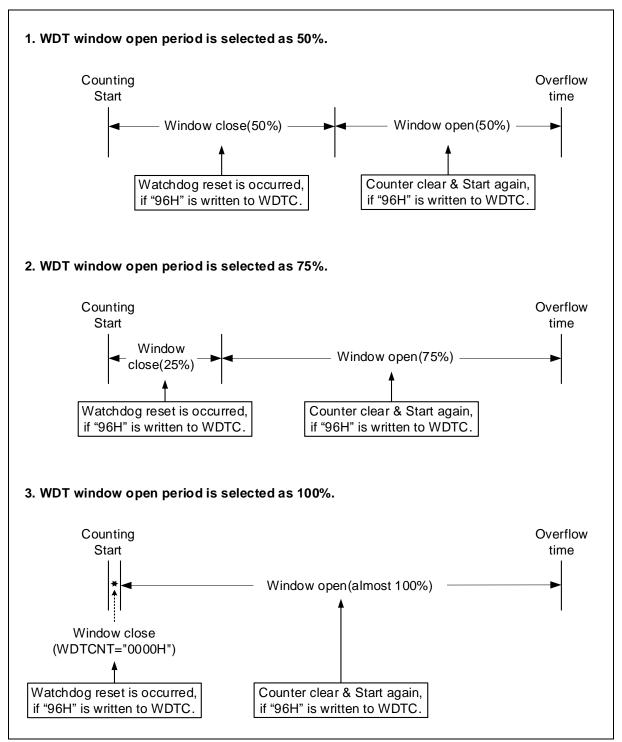


Figure 29. Timing Diagram of Watchdog Timer Interrupt

Table 12. Window Open Period Settings

Setting of window open period	Window close period	Window open period
50%, WINDOW[1:0]=00b & WDTPDON = 1	50%	50%
75%, WINDOW[1:0]=01b & WDTPDON = 1	25%	75%
100%, WINDOW[1:0]=10b & WDTPDON = 1	WDTCNT = "0000H"	Almost 100%
100%, WDTPDON = 0	WDTCNT = "0000H"	Almost 100%

10.2 WDT block diagram

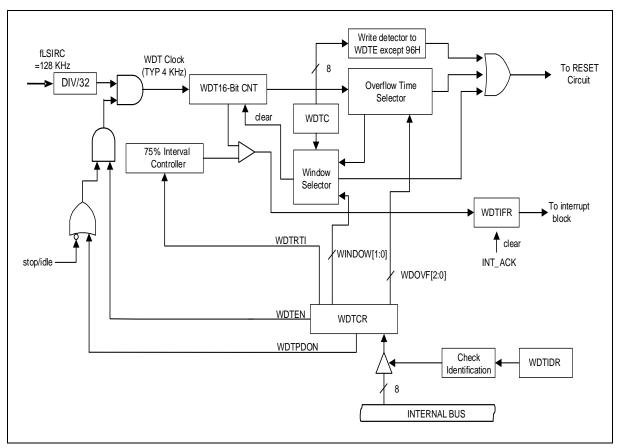


Figure 30. Block Diagram of Watchdog Timer

10.3 Register map

Table 13. Watchdog Timer Register Map

Name	ame Address Direction		Default	Description
WDTC	1010H	1010H R/W 00H		Watchdog Timer Clear Register
WDTSR	1011H R/W 00H Watchdog Timer Star		Watchdog Timer Status Register	
WDTIDR	8EH	H W 00H Watchdog		Watchdog Timer Identification Register
WDTCR	8DH	R/W	07H	Watchdog Timer Control Register
WDTCNTH	CNTH 1012H R 00H Watchdog Timer C		Watchdog Timer Count H Register	
WDTCNTL	1013H	R	00H	Watchdog Timer Count L Register

10.4 Register description

WDTCNTH (Watchdog Timer Counter High Register): 1012H

7	6	5	4	3	2	1	0
WDTCNTH7	WDTCNTH6	WDTCNTH5	WDTCNTH4	WDTCNTH3	WDTCNTH2	WDTCNTH1	WDTCNTH0
R	R	R	R	R	R	R	R

Initial value: 00H

WDTCNTH[7:0] WDT Counter High

WDTCNTL (Watchdog Timer Counter Low Register): 1013H

7	6	5	4	3	2	1	0
WDTCNTL7	WDTCNTL6	WDTCNTL5	WDTCNTL4	WDTCNTL	WDTCNTL2	WDTCNTL1	WDTCNTL0
R	R	R	R	R	R	R	R

Initial value: 00H

WDTCNTL[7:0] WDT Counter Low

WDTC (Watchdog Timer Clear Register): 1010H

7	6	5	4	3	2	1	0
WDTC7	WDTC6	WDTC5	WDTC4	WDTC3	WDTC2	WDTC1	WDTC0
RW							

Initial value: 00H

WDTC[7:0] WDT Counter Clear

Others Reset occurs

10010110 WDT counter clear and start again

WDTSR (Watchdog Timer Status Register): 1011H

7	6	5	4	3	2	1	0
_	_	_	_	_	_	WSTATE	WDTIFR
_	_	_	_	_	_	R	RW

Initial value: 00H

WSTATE Window Status

0 Close window

1 Open windowWDTIFR When WDT Interrupt or

When WDT Interrupt occurs, this bit becomes '1'. For clearing bit, write

'0' to this bit or auto clear by INT_ACK signal.

0 WDT Interrupt no generation.

1 WDT Interrupt generation.

WDTIDR (Watchdog Timer Identification Register): 8EH

7	6	5	4	3	2	1	0
WDTIDR7	WDTIDR6	WDTIDR5	WDTIDR4	WDTIDR3	WDTIDR2	WDTIDR1	WDTIDR0
W	W	W	W	W	W	W	W

Initial value: 00H

WDTIDR[7:0] WDT Identification for a WDTCR

Others No identification value.

01011001 Identification value for a WDTCR write.

NOTE:

 These bits are automatically cleared to logic '00H' immediately after WDTCR write.

WDTCR (Watchdog Timer Control Register): 8DH

7	6	5	4	3	2	1	0
WDTEN	WDTRTI	WDTPDON	WINDOW1	WINDOW0	WDOVF2	WDOVF1	WDOVF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Initial value: 07H

WDTEN	Control WDT	Control WDT Operation						
	0	Disable (WDTR	C Stop)					
	1	Enable						
WDTRTI	3/4 Interval in	terrupt						
	0	Disable (WDT ov	erflow reset use	ed)				
	1	Enable						
WDTPDON	Operation on	n on Stop/Idle Mode						
	0	WDTRC operation stop in Stop/Idle Mode						
	1	WDTRC operation in Stop/Idle Mode						
WINDOW[1:0]	Select WDT v	Select WDT window open period						
	WINDOW1	WINDOW0	Description					
	0	0	50%					
	0	1	75%					
	1	0	100%					
	1	1	No used					
WDOVF[2:0]	Select overflo	ow time						
	WDOVF2	WDOVF1	WDOVF0	Description				
	0	0	0	$2^6/f_{WDT}$				
	0	0	1	$2^{7}/f_{WDT}$				
	0	1	0	$2^8/f_{WDT}$				
	0	1	1	2 ⁹ /f _{WDT}				
	1	0	0	$2^{11}/f_{WDT}$				
	1	0	1	$2^{13}/f_{WDT}$				
	1	1	0	$2^{14}/f_{WDT}$				
	1	1	1	$2^{16}/f_{WDT}$				

NOTE:

^{1.} When accessing WDTCR, '0x59' must be first written to WDTIDR.

11. Watch timer

Watch timer (WT) has functions for RTC (Real Time Clock) operation which are generally used for RTC design. The WT consists of a clock source select circuit, a timer counter circuit, an output select circuit and watch timer control registers.

Before starting the WT operation, a user needs to determine an input clock source and output interval, and to set WTEN of the WTCT to '1'. It is able to execute simultaneously or individually. To stop or reset the WT, the WTEN bit must be cleared. When the CPU is in STOP mode, a sub clock can be alive so that the WT continues its operation.

Watch timer counter circuits may be composed of 21-bit counter which contains low 14-bit with binary counter and high 7-bit counter in order to increase resolution. By configuring the WTDR, it is possible to control WT clear, set interval value at write time, and read 7-bit WT counter value at read time.

11.1 WT block diagram

In this section, the WT of A96G166/A96A166/A96S166 is described in a block diagram.

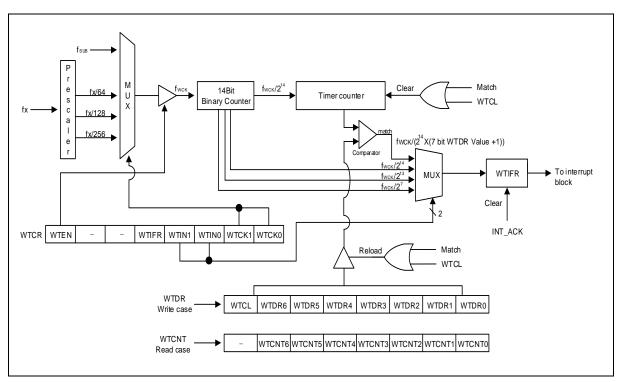


Figure 31. Watch Timer Block Diagram

11.2 Register map

Table 14. Watch Timer Register Map

			<u> </u>				
Name Address Direct		Direction	Default	Description			
WTCNT 89H R		R	00H	Watch Timer Counter Register			
WTDR	89H	89H W 7FH Watch Timer Data Re		Watch Timer Data Register			
WTCR	96H	R/W	00H	Watch Timer Control Register			

11.3 Watch timer register description

WTCNT (Watch Timer Counter Register: Read Case): 89H

7	6	5	4	3	2	1	0
-	WTCNT6	WTCNT5	WTCNT4	WTCNT3	WTCNT2	WTCNT1	WTCNT0
_	R	R	R	R	R	R	R

Initial value: 00H

WTCNT[6:0] WT Counter

WTDR (Watch Timer Data Register: Write Case): 89H

7	6	5	4	3	2	1	0
WTCL	WTDR6	WTDR5	WTDR4	WTDR3	WTDR2	WTDR1	WTDR0
RW	W	W	W	W	W	W	W

Initial value: 7FH

WTCL Clear WT Counter

0 Free Run

1 Clear WT Counter (auto clear after 1 Cycle)

WTDR[6:0] Set WT period

WT Interrupt Interval=fwck/(2^14 x(7bit WTDR Value+1))

NOTE:

1. Do not write "0" in the WTDR register.

WTCR (Watch Timer Control Register): 96H

_	7	6	5	4	3	2	1	0
	WTEN	_	-	WTIFR	WTIN1	WTINO	WTCK1	WTCK0
Ī	RW	_	_	RW	RW	RW	RW	RW

Initial value: 00H

WTEN	Control W	atch Timer	atch Timer				
	0	Disable					
	1	Enable					
WTIFR			ccurs, this bit becomes '1'. For clearing bit, write natically clear by INT_ACK signal. Writing "1" has				
	0	WT Inter	rupt no generation				
	1	WT Inter	rupt generation				
WTIN[1:0]	/TIN[1:0] Determine interrupt interval						
	WTIN1	WTIN0	Description				
	0	0	fwck/2^7				
	0	1	f _{WCK} /2^13				
	1	0	fwck/2^14				
	1	1	f _{WCK} /(2^14 x (7bit WTDR Value+1))				
WTCK[1:0]	Determin	ne Source C	Clock				
	WTCK1	WTCK0	Description				
	0	0	f _{SUB}				
	0	1	fx/256				
	1	0	fx/128				
	1	1	f _X /64				

NOTES:

- 1. f_{X} System clock frequency (Where f_{X} = 4.19 MHz)
- 2. f_{SUB} Sub clock oscillator frequency (32.768 kHz)
- 3. f_{WCK} Selected Watch timer clock

12. Timer 0/1/2

12.1 Timer 0

An 8-bit timer 0 consists of a multiplexer, a timer 0 counter register, a timer 0 data register, a timer 0 capture data register and a timer 0 control register (T0CNT, T0DR, T0CDR, T0CR).

Timer 0 operates in one of three modes introduced in the followings:

- 8-bit timer/counter mode
- 8-bit PWM output mode
- 8-bit capture mode

Timer/counter 0 can be clocked by an internal or an external clock source (EC0). The clock source is selected by clock selection logic which is controlled by clock selection bits T0CK[2:0].

TIMER0 clock source: f_x/2, f_x/4, f_x/8, f_x/32, f_x/128, f_x/512, f_x/2048 and EC0

In capture mode, data is captured into input capture data register (T0CDR) by EINT10. In timer/counter mode, whenever counter value is equal to T0DR, T0O port toggles. In addition, timer 0 outputs PWM waveform through PWM0O port in the PWM mode.

T0EN T0MS[1:0] T0CK[2:0] Timer 0 1 00 XXX 8-bit Timer/Counter Mode 1 01 XXX 8-bit PWM Mode 1 1X XXX 8-bit Capture Mode

Table 15. Timer 0 Operating Mode

12.1.1 8-bit timer/counter mode

As shown in Figure 32, 8-bit timer/counter mode is selected by control register.

8-bit timer has counter and data registers. The counter register is increased by internal or external clock input. Timer 0 can use the input clock with one of 2, 4, 8, 32, 128, 512 and 2048 prescaler division rates (T0CK[2:0]). When both values of T0CNT and T0DR are identical to each other in timer 0, a match signal is generated and the interrupt of Timer 0 occurs.T0CNT value is automatically cleared by the match signal, and can be cleared by software (T0CC) too.

External clock (EC0) counts up the timer at the rising edge. If the EC0 is selected as a clock source by T0CK[2:0], EC0 port should be set as an input port by configuring P2IO, P3IO bit.

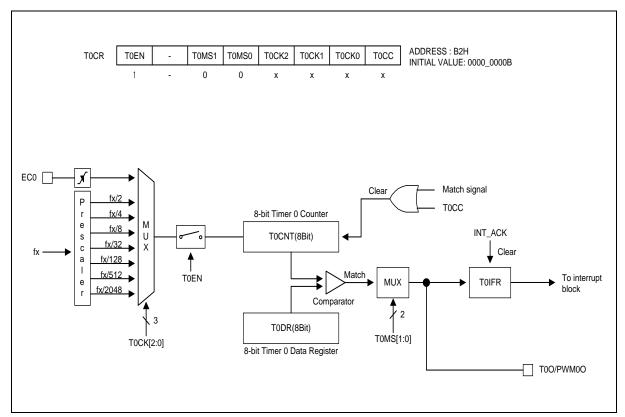


Figure 32. 8-bit Timer/Counter Mode for Timer 0

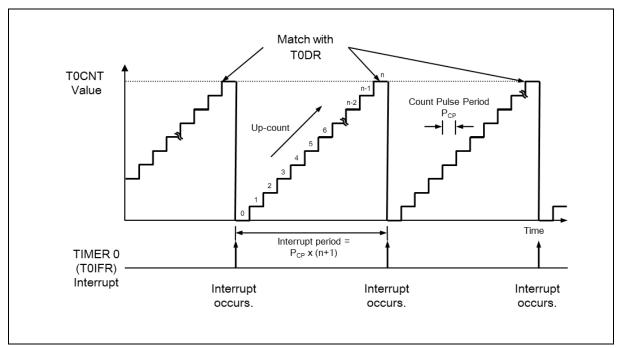


Figure 33. 8-bit Timer/Counter 0 Example

12.1.2 8-bit PWM mode

Timer 0 has a high speed PWM (Pulse Width Modulation) function. In PWM mode, T0O/PWM0O pin outputs up to 8-bit resolution PWM output. This pin should be configured as a PWM output by setting the T0O/PWM0O function by P3FSRH[0] or P3FSRL[4] bits.

In 8-bit timer/counter mode, a match signal is generated when the counter value is identical to the value of T0DR. When values of T0CNT and T0DR are identical to each other in timer 0, a match signal is generated and the interrupt of timer 0 occurs.

In PWM mode, the match signal does not clear the counter. Instead, it runs continuously, overflowing at "FFH". Then the counter continues incrementing from "00H". The timer 0 overflow interrupt is generated whenever a counter overflow occurs. TOCNT value is cleared by software (TOCC) bit.

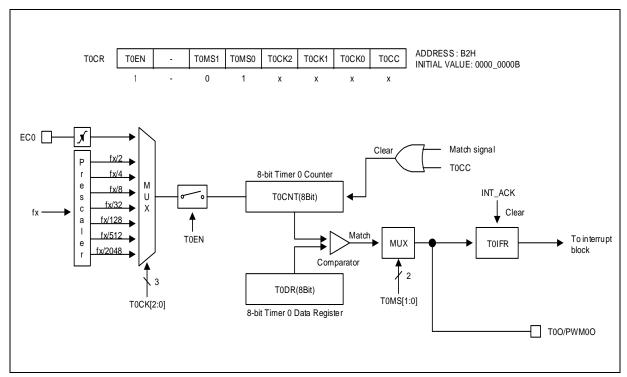


Figure 34. 8-bit PWM Mode for Timer 0

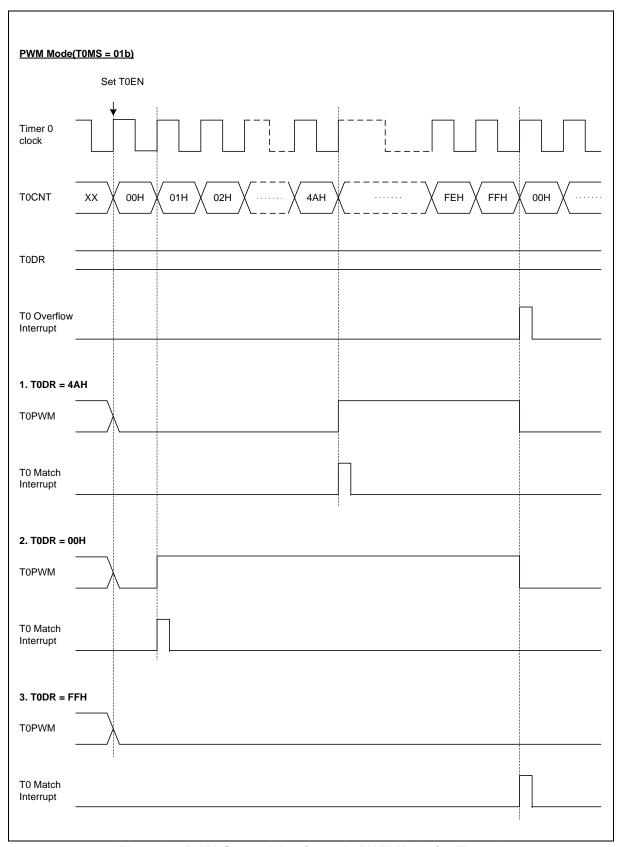


Figure 35. PWM Output Waveforms in PWM Mode for Timer 0

12.1.3 8-bit capture mode

Timer 0 capture mode is set by configuring T0MS[1:0] as '1x'. Clock source can use the internal/external clock. Basically, it has the same function as the 8-bit timer/counter mode has, and the interrupt occurs when T0CNT equals to T0DR. T0CNTvalue is automatically cleared by match signal and it can be also cleared by software (T0CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T0CDR. In the timer 0 capture mode, timer 0 output (T0O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT10 function is chosen. Of course, the EINT10 pin must be set to an input port.

T0CDR and T0DR are in the same address. In the capture mode, reading operation readsT0CDR, not T0DR and writing operation will update T0DR.

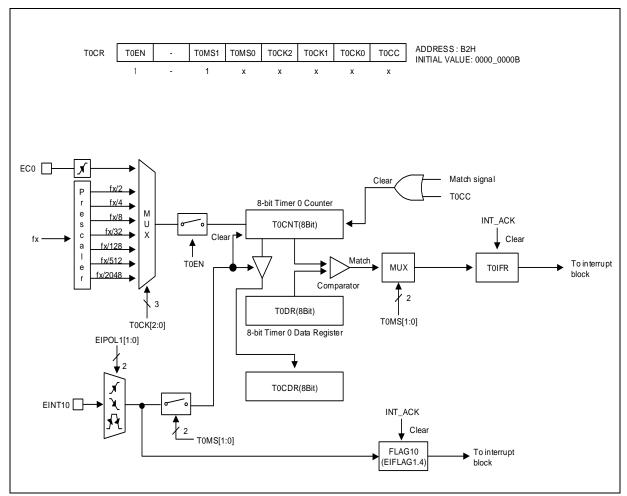


Figure 36. 8-bit Capture Mode for Timer 0

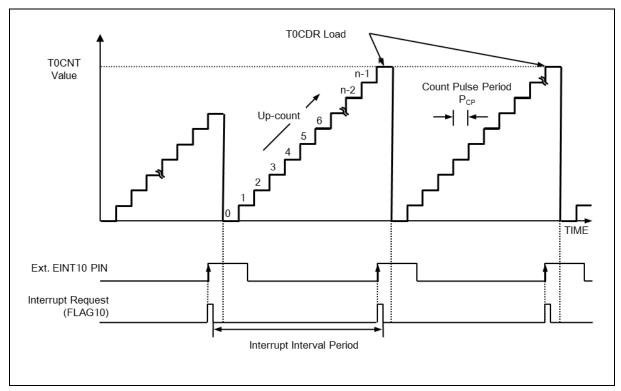


Figure 37. Input Capture Mode Operation for Timer 0

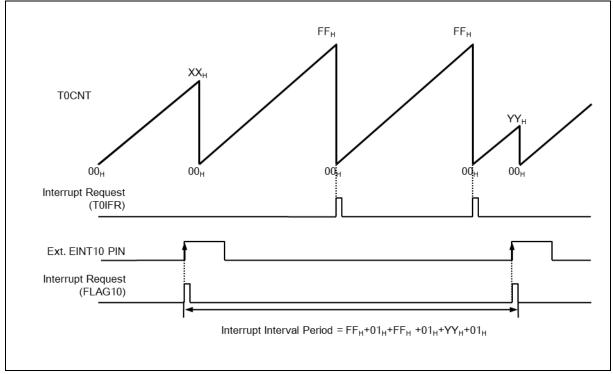


Figure 38. Express Timer Overflow in Capture Mode

12.1.4 Timer 0 block diagram

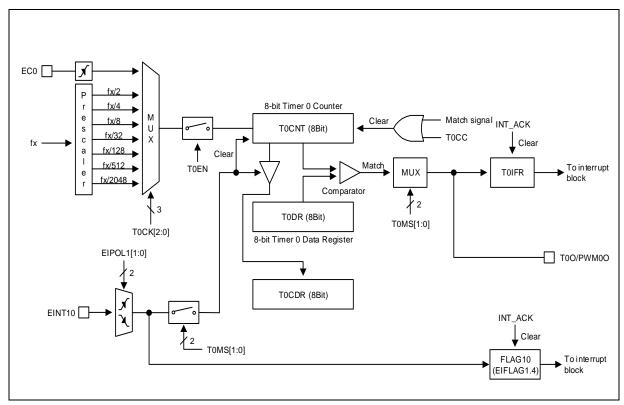


Figure 39. 8-bit Timer 0 Block Diagram

12.1.5 Register map

Table 16. Timer 0 Register Map

Name	Address	Direction	Default	Description
TOCNT	ВЗН	R	00H	Timer 0 Counter Register
T0DR	B4H	R/W	FFH	Timer 0 Data Register
T0CDR	B4H	R	00H	Timer 0 Capture Data Register
T0CR	B2H	R/W	00H	Timer 0 Control Register

12.1.6 Register description

T0CNT (Timer 0 Counter Register): B3H

7	6	5	4	3	2	1	0
T0CNT7	TOCNT6	TOCNT5	TOCNT4	TOCNT3	TOCNT2	TOCNT1	TOCNTO
R	R	R	R	R	R	R	R

Initial value: 00H

T0CNT[7:0] T0 Counter

T0DR (Timer 0 Data Register): B4H

7	6	5	4	3	2	1	0
TODR7	TODR6	TODR5	TODR4	TODR3	T0DR2	T0DR1	TODRO
RW							

Initial value: FFH

T0DR[7:0] T0 Data

T0CDR (Timer 0 Capture Data Register: Read Case, Capture mode only): B4H

7	6	5	4	3	2	1	0
T0CDR7	TOCDR6	T0CDR5	T0CDR4	T0CDR3	T0CDR2	T0CDR1	TOCDR0
R	R	R	R	R	R	R	R

Initial value: 00H

T0CDR[7:0] T0 Capture Data

T0CR (Timer 0 Control Register): B2H

7	6	5	4	3	2	1	0
TOEN	_	T0MS1	TOMSO	TOCK2	T0CK1	TOCKO	T0CC
RW	_	RW	RW	RW	RW	RW	RW

Initial value: 00H

T0EN	Control	Control Timer 0					
	0	Timer 0 dis	able				
	1	Timer 0 ena	able				
T0MS[1:0]	Control	Timer 0 Oper	ation Mode				
	T0MS1	TOM	S0	Description			
	0	0		Timer/counter mode			
	0	1		PWM mode			
	1	Х		Capture mode			
T0CK[2:0]	Select T	imer 0 clock	source. fx is	a system clock frequency			
	T0CK2	T0CK1	T0CK0	Description			
	0	0	0	fx/2			
	0	0	1	fx/4			
	0	1	0	fx/8			
	0	1	1	fx/32			
	1	0	0	fx/128			
	1	0	1	fx/512			
	1	1	0	fx/2048			
	1	1	1	External Clock (EC0)			
T0CC	Clear tin	ner 0 Counte	r				
	0	No effect					
	1	Clear the Timer 0 counter (When write, autor cleared "0" after being cleared counter)					

NOTES:

- 1. Match Interrupt is generated in Capture mode.
- 2. Refer to the External Interrupt Flag 1 register (EIFLAG1) for the T0 interrupt flags.

12.2 Timer 1

A 16-bit timer 1 consists of multiplexer, timer 1 A data register high/low, timer 1 B data register high/low and timer 1 control register high/low (T1ADRH, T1ADRL, T1BDRH, T1BDRL, T1CRH, T1CRL).

Timer 1 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 1 uses an internal clock or an external clock (EC1) as an input clock source. The clock sources are introduced below, and one is selected by clock selection logic which is controlled by clock selection bits (T1CK[2:0]).

TIMER 1 clock source: f_x/1, f_x/2, f_x/4, f_x/8, f_x/64, f_x/2048, HSI and EC1

In capture mode, the data is captured into input capture data register (T1BDRH/T1BDRL) by EINT11. Timer 1 results in the comparison between counter and data register through T1O port in timer/counter mode. In addition, Timer 1 outputs PWM waveform through PWM1O port in the PPG mode.

Table 17. TIMER 1 Operating Modes

T1EN	P1FSRL[5:4]	T1MS[1:0]	T1CK[2:0]	Timer 1
1	01	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1	01	10	XXX	16 Bit PPG Mode(one-shot mode)
1	01	11	XXX	16 Bit PPG Mode(repeat mode)

12.2.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in Figure 40. The counter register is increased by internal or external clock input.

Timer 1 can use the input clock with one of 1, 2, 4, 8, 64, 2048 and High-speed internal RC oscillator (HSI) prescaler division rates (T1CK[2:0]). When the value of T1CNTH, T1CNTL and the value of T1ADRH, T1ADRL are identical to each other in Timer 1, a match signal is generated and the interrupt of Timer1 occurs. The T1CNTH, T1CNTL value is automatically cleared by the match signal. It can be cleared by software (T1CC) too.

The external clock (EC1) counts up the timer at the rising edge. If the EC1 is selected as a clock source by T1CK[2:0], EC1 port should be set to the input port by P12IO bit.

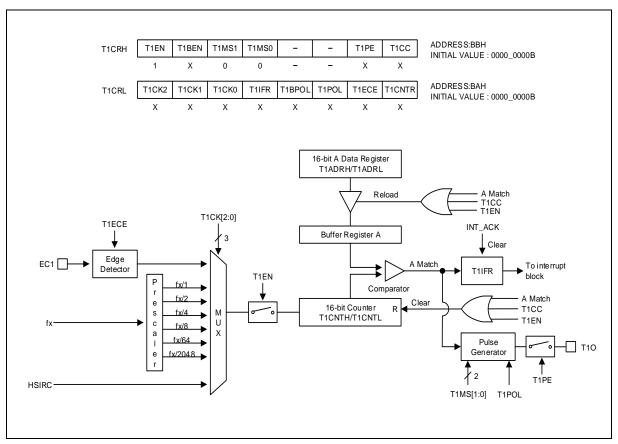


Figure 40. 16-bit Timer/Counter Mode of Timer 1



Figure 41. 16-bit Timer/Counter Mode Operation Example

12.2.2 16-bit capture mode

It uses an internal/external clock as a clock source. Basically, the 16-bit timer 1 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T1CNTH/T1CNTL is equal to T1ADRH/T1ADRL. The T1CNTH, T1CNTL values are automatically cleared by a match signal. It can be cleared by software (T1CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T1BDRH/T1BDRL.

According to EIPOL1 registers setting, the external interrupt EINT11 function is selected. EINT11 pin must be set as an input port.

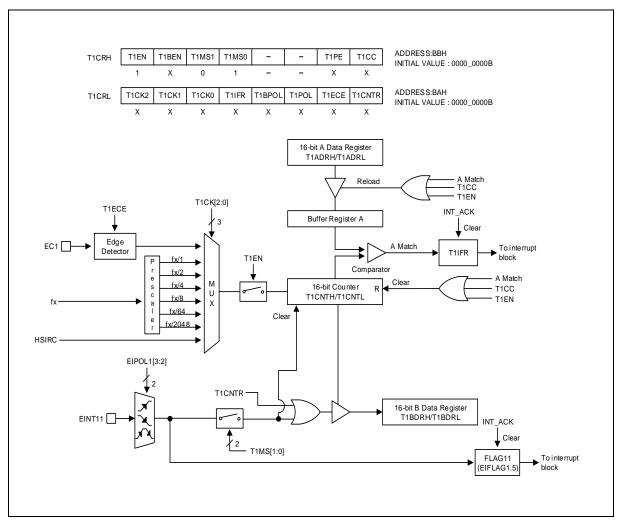


Figure 42. 16-bit Capture Mode of Timer 1

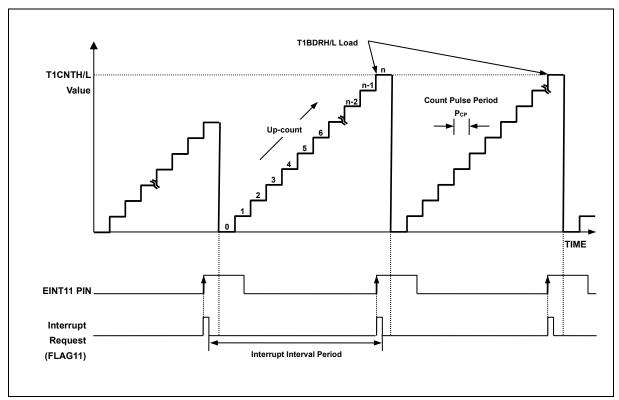


Figure 43. 16-bit Capture Mode Operation Example

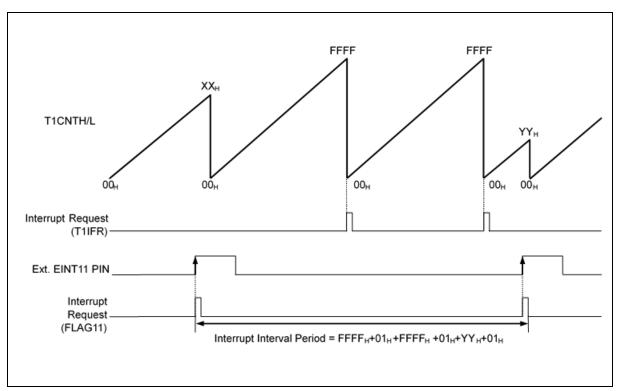


Figure 44. Express Timer Overflow 16-bit Capture Mode

12.2.3 16-bit PPG mode

TIMER 1 has a PPG (Programmable Pulse Generation) function. In PPG mode, T1O/PWM1O pin outputs up to 16-bit resolution PWM output. For this function, T1O/PWM1O pin must be configured as a PWM output by setting P0FSRL[5:4] or P1FSRL[1:0] or P1FSRL[5:4] to '01'. Period of the PWM output is determined by T1ADRH/T1ADRL, and duty of the PWM output is determined by T1BDRH/T1BDRL.

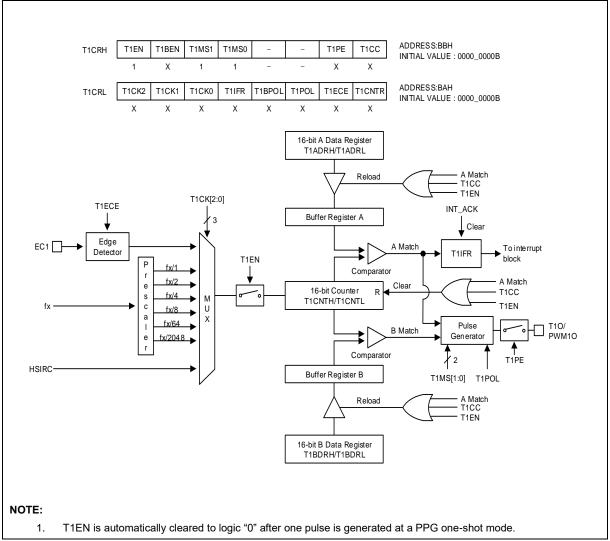


Figure 45. 16-bit PPG Mode of Timer 1

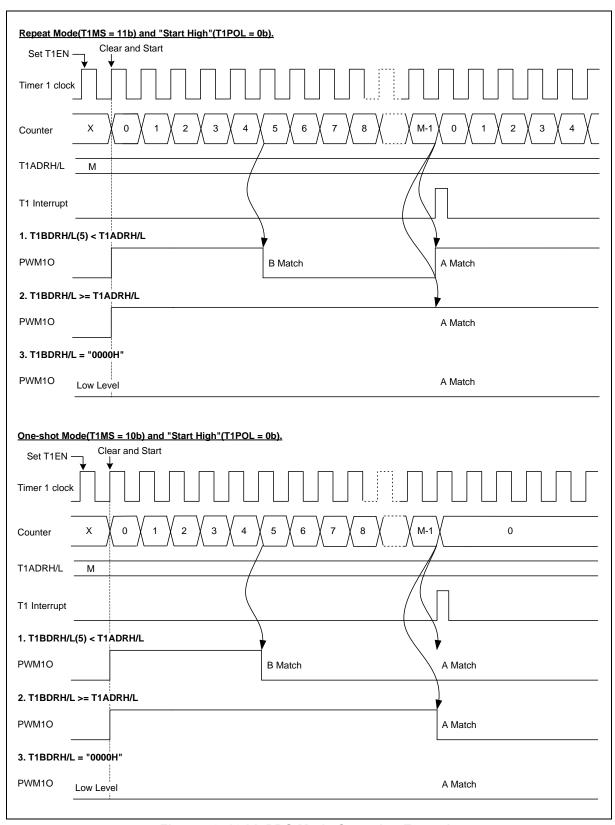


Figure 46. 16-bit PPG Mode Operation Example

12.2.4 16-bit complementary PWM mode (dead time)

The timer 1 has a complementary PWM function. The complementary PWM output function operates when T1BEN is set. In PPG mode, PWM1O/PWM1OB pin outputs up to 16-bit resolution complementary PWM output. This pin should be configured as a PWM output by setting P1FSRL[1:0] to '01'.

The period of the PWM output is determined by the T1ADRH/T1ADRL. And the duty of the PWM output is determined by the T1BDRH/T1BDRL. The delay (dead time) of the Complementary PWM output is determined by T1CDRH / T1CDRL. And the duty of the Complementary PWM output is determined by T1DDRH / T1DDRL.

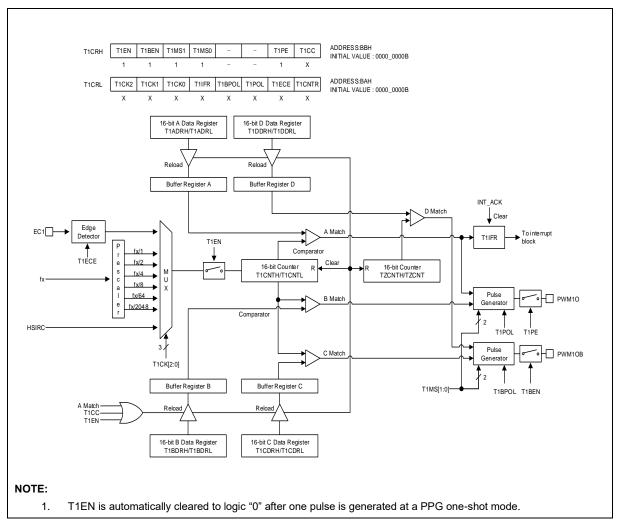


Figure 47. 16-bit Complementary PWM Mode for Timer 1

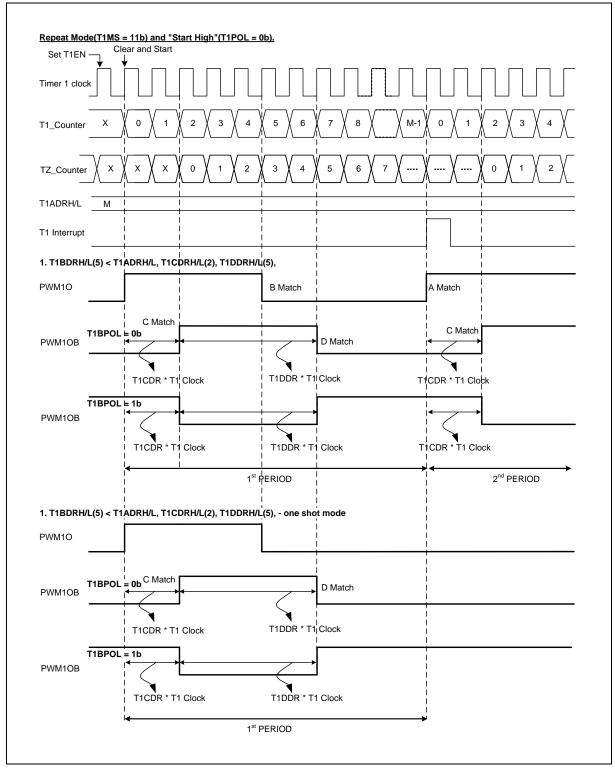


Figure 48. 16-bit Complementary PWM Mode Timing Chart for Timer 1

12.2.5 16-bit timer 1 block diagram

In this section, a 16-bit timer 1 is described in a block diagram.

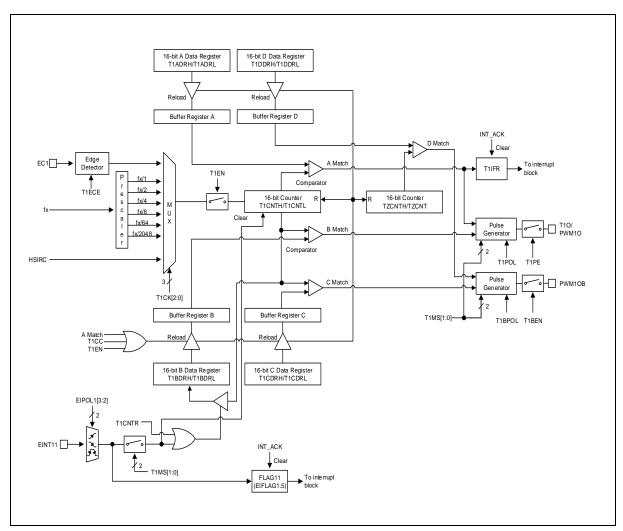


Figure 49. 16-bit Timer 1 Block Diagram

12.2.6 Register map

Table 18. TIMER 1 Register Map

Name	Address	Direction	Default	Description
T1CRL	ВАН	R/W	00H	Timer 1 Control Low Register
T1CRH	ВВН	R/W	00H	Timer 1 Control High Register
T1ADRL	всн	R/W	FFH	Timer 1 A Data Low Register
T1ADRH	BDH	R/W	FFH	Timer 1 A Data High Register
T1BDRL	BEH	R/W	FFH	Timer 1 B Data Low Register
T1BDRH	BFH	R/W	FFH	Timer 1 B Data High Register
T1CDRL	D9H	R/W	FFH	Timer 1 C Data Low Register
T1CDRH	DAH	R/W	FFH	Timer 1 C Data High Register
T1DDRL	DBH	R/W	FFH	Timer 1 D Data Low Register
T1DDRH	DCH	R/W	FFH	Timer 1 D Data High Register

12.2.7 Register description

T1ADRH (Timer 1 A data High Register): BDH

	7	6	5	4	3	2	1	0
T1A	DRH7	T1ADRH6	T1ADRH5	T1ADRH4	T1ADRH3	T1ADRH2	T1ADRH1	T1ADRH0
F	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Initial value: FFH

T1ADRH[7:0]

T1 A Data High Byte

T1ADRL (Timer 1 A Data Low Register): BCH

	7	6	5	4	3	2	1	0
	T1ADRL7	T1ADRL6	T1ADRL5	T1ADRL4	T1ADRL3	T1ADRL2	T1ADRL1	T1ADRL0
Ī	R/W							

Initial value: FFH

T1ADRL[7:0] T1 A Data Low Byte

NOTE: Do not write "0000H" in the T1ADRH/T1ADRL register

when PPG mode

T1BDRH (Timer 1 B Data High Register): BFH

7	6	5	4	3	2	1	0
T1BDRH7	T1BDRH6	T1BDRH5	T1BDRH4	T1BDRH3	T1BDRH2	T1BDRH1	T1BDRH0
R/W							

Initial value: FFH

T1BDRH[7:0] T1 B Data High Byte

T1BDRL (Timer 1 B Data Low Register): BEH

7	6	5	4	3	2	1	0
T1BDRL7	T1BDRL6	T1BDRL5	T1BDRL4	T1BDRL3	T1BDRL2	T1BDRL1	T1BDRL0
R/W							

Initial value: FFH

T1BDRL[7:0] T1 B Data Low Byte

T1CDRH (Timer 1 C data High Register): DAH

7	6	5	4	3	2	1	0
T1CDRH7	T1CDRH6	T1CDRH5	T1CDRH4	T1CDRH3	T1CDRH2	T1CDRH1	T1CDRH0
R/W							

Initial value: FFH

T1CDRH[7:0]

T1 C Data High Byte

T1CDRL (Timer 1 C Data Low Register): D9H

7	6	5	4	3	2	1	0
T1CDRL7	T1CDRL6	T1CDRL5	T1CDRL4	T1CDRL3	T1CDRL2	T1CDRL1	T1CDRL0
R/W							

Initial value: FFH

T1CDRL[7:0] T1 C Data Low Byte

T1DDRH (Timer 1 D data High Register): DCH

	7	6	5	4	3	2	1	0
ſ	T1DDRH7	T1DDRH6	T1DDRH5	T1DDRH4	T1DDRH3	T1DDRH2	T1DDRH1	T1DDRH0
Ī	R/W							

Initial value: FFH

T1DDRH[7:0]

T1 D Data High Byte

T1DDRL (Timer 1 D Data Low Register): DBH

7	6	5	4	3	2	1	0
T1DDRL7	T1DDRL6	T1DDRL5	T1DDRL4	T1DDRL3	T1DDRL2	T1DDRL1	T1DDRL0
R/W							

Initial value: FFH

T1DDRL[7:0] T1 D Data Low Byte

T1CRH (Timer 1 Control High Register): BBH

7	6	5	4	3	2	1	0
T1EN	T1BEN	T1MS1	T1MS0	_	_	T1PE	T1CC
RW	R/W	R/W	RW	-	-	R/W	RW

Initial value: 00H

T1EN	Control 7	imer 1						
	0	Timer 1 di	isable					
	1	Timer 1 e	Timer 1 enable (Counter clear and start)					
T1BEN	Control C	Complement	ary PWM					
	0	Complem	entary PWM disable					
	1	Complem	entary PWM enable					
T1MS[1:0]	Control 7	ol Timer 1 Operation Mode						
	T1MS1	T1MS0	Description					
	0	0	Timer/counter mode (T1O: toggle at A match)					
	0	1	Capture mode (The A match interrupt can occur)					
	1	0	PPG one-shot mode (PWM1O)					
	1	1	PPG repeat mode (PWM1O)					
T1PE	Control 7	imer 1 port	output					
	0	Timer 1 o	utput disable					
	1	Timer 1 o	utput enable					
T1CC	Clear Tir	ner 1 Counte	er					
	0	No effect						
	1		Timer 1 counter (When write, automatically "after being cleared counter)					
			•					

T1CRL (Timer 1 Control Low Register): BAH

7	6	5	4	3	2	1	0
T1CK2	T1CK1	T1CK0	T1IFR	T1BPOL	T1POL	T1ECE	T1CNTR
R/W	R/W	R/W	R/W	R/W	RW	RW	RW

Initial value: 00H

T1CK[2:0]	Select Tin	ner 1 clock s	source. fx is	main system clock frequency			
	T1CK2	T1CK1	T1CK0	Description			
	0	0	0	fx/2048			
	0	0	1	fx/64			
	0	1	0	fx/8			
	0	1	1	fx/4			
	1	0	0	fx/2			
	1	0	1	fx/1			
	1	1	0	HSI Direct (32 MHz)			
	1	1	1	External clock (EC1)			
T1IFR	When T1 Interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or auto clear by INT_ACK signal. Writing "1" has no effect.						
	0	T1 Interrupt	t no generat	tion			
	1	T1 Interrupt generation					
T1BPOL	PWM10B	OB Polarity Selection					
	0	Start High (PWM1OB is low level at disable)					
	1	Start Low (F	PWM10B is	s high level at disable)			
T1POL	T10/PWN	110 Polarity	Selection				
	0	Start High (T1O/PWM1	O is low level at disable)			
	1	Start Low (Γ1O/PWM1	O is high level at disable)			
T1ECE	Timer 1 E	xternal Cloc	k Edge Sel	ection			
	0	External clo	ock falling e	dge			
	1	External clo	ock rising ed	lge			
T1CNTR	Timer 1 C	ounter Read	d Control				
	0	No effect					
	1			to the B data register (When write, 0" after being loaded)			

12.3 Timer 2

A 16-bit timer 2 consists of a multiplexer, timer 2 A data high/low register, timer 2 B data high/low register and timer 2 control high/low register (T2ADRH, T2ADRL, T2BDRH, T2BDRL, T2CRH, and T2CRL).

Timer 2 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 2 can be a divided clock of a system clock which is selected from prescaler output, external clock(EC2) and T1 A Match (timer 1 A match signal). The clock source is selected by a clock selection logic, controlled by clock selection bits (T2CK[2:0]).

TIMER 2 clock source: f_x/1, f_x/2, f_x/4, f_x/8, f_x/128, f_x/512, EC2 and T1 A Match

In capture mode, data is captured into input capture data registers (T2BDRH/T2BDRL) by EINT12. In timer/counter mode, whenever counter value is equal to T2ADRH/L, T2O port toggles. In addition, the timer 2 outputs PWM waveform to PWM2O port in the PPG mode.

Table 19. TIMER 2 Operating Modes

T2EN	P1FSRL[7:6]	P1FSRL[7:6] T2MS[1:0] T2CK[2:0] T		Timer 2		
1	01	00	00 XXX 16 Bit Timer/Counter Mode			
1	00	01	XXX	16 Bit Capture Mode		
1	01	10	XXX	16 Bit PPG Mode(one-shot mode)		
1	01 11 XXX 16 Bit PPG Mode(repeat mode)		16 Bit PPG Mode(repeat mode)			

12.3.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in Figure 50. The counter register is increased by internal or timer 1 A match clock input.

Timer 2 can use the input clock with one of 1, 2, 4, 8, 128, 512, external clock (EC2) and T1 A Match prescaler division rates (T2CK[2:0]). When the values of T2CNTH/T2CNTL and T2ADRH/T2ADRL are identical to each other in timer 2, a match signal is generated and the interrupt of Timer 2 occurs. The T2CNTH/T2CNTL values are automatically cleared by the match signal. It can be cleared by software (T2CC) too.

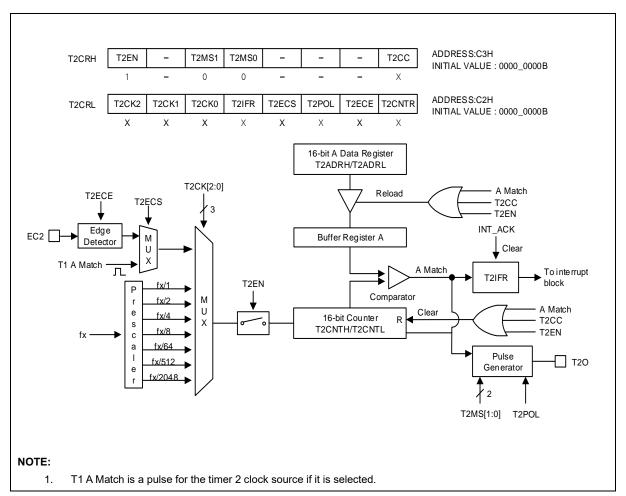


Figure 50. 16-bit Timer/Counter Mode of Timer 2

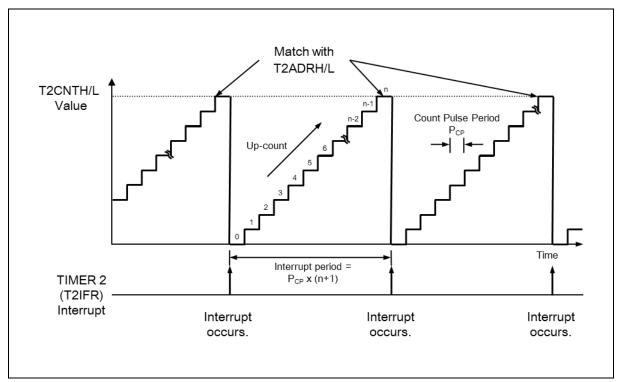


Figure 51. 16-bit Timer/Counter Mode Operation Example

12.3.2 16-bit capture mode

Timer 2 capture mode is set by configuring T2MS[1:0] as '01'. It uses an internal clock as a clock source. Basically, the 16-bit timer 2 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T2CNTH/T2CNTL is equal to T2ADRH/T2ADRL. The T2CNTH, T2CNTL values are automatically cleared by a match signal. It can be cleared by software (T2CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T2BDRH/T2BDRL. In timer 2 capture mode, timer 2 output (T2O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT12 function is selected. EINT12 pin must be set as an input port.

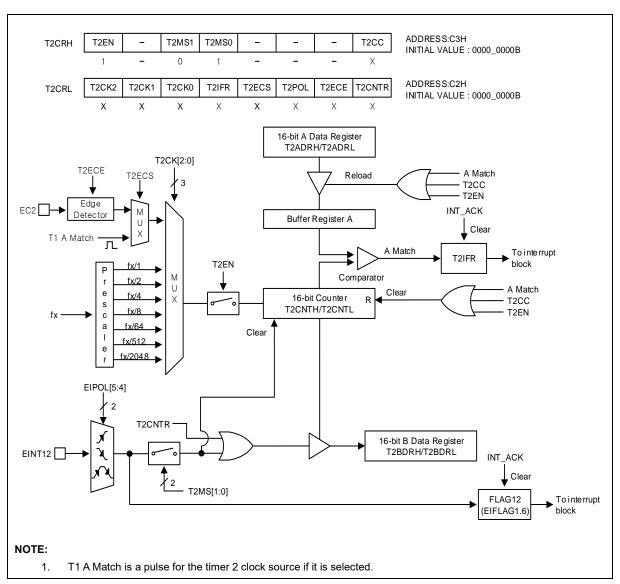


Figure 52. 16-bit Capture Mode of Timer 2

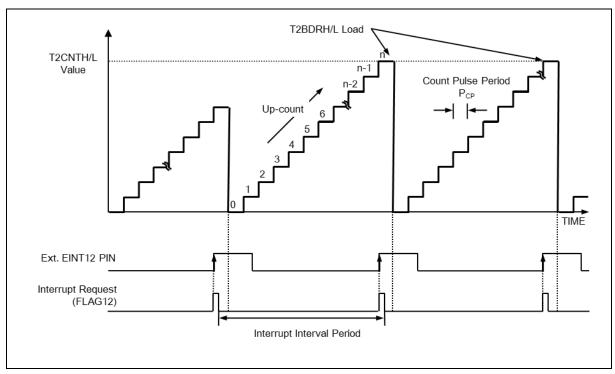


Figure 53. 16-bit Capture Mode Operation Example

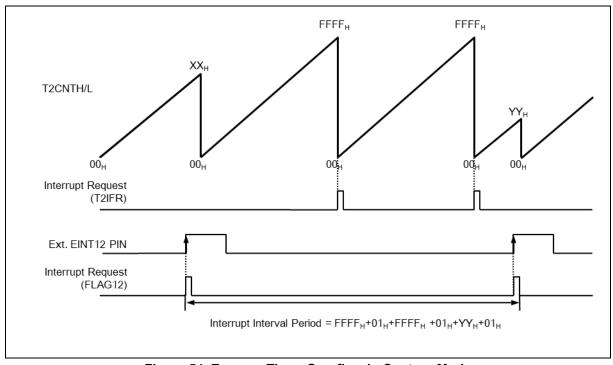


Figure 54. Express Timer Overflow in Capture Mode

12.3.3 16-bit PPG mode

TIMER 2 has a PPG (Programmable Pulse Generation) function. In PPG mode, T2O/PWM2O pin outputs up to 16-bit resolution PWM output. For this function, T2O/PWM2O pin must be configured as a PWM output by setting P1FSRL[7:6] or P0FSRH[3:2] to '01'. Period of the PWM output is determined by T2ADRH/T2ADRL, and duty of the PWM output is determined by T2BDRH/T2BDRL.

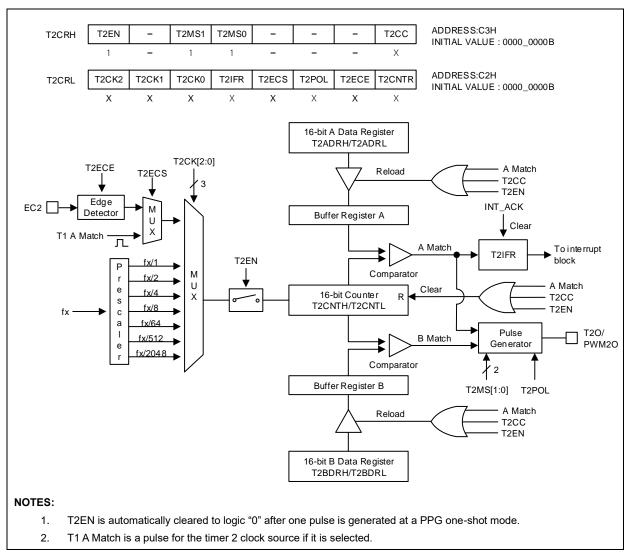


Figure 55. 16-bit PPG Mode of Timer 2

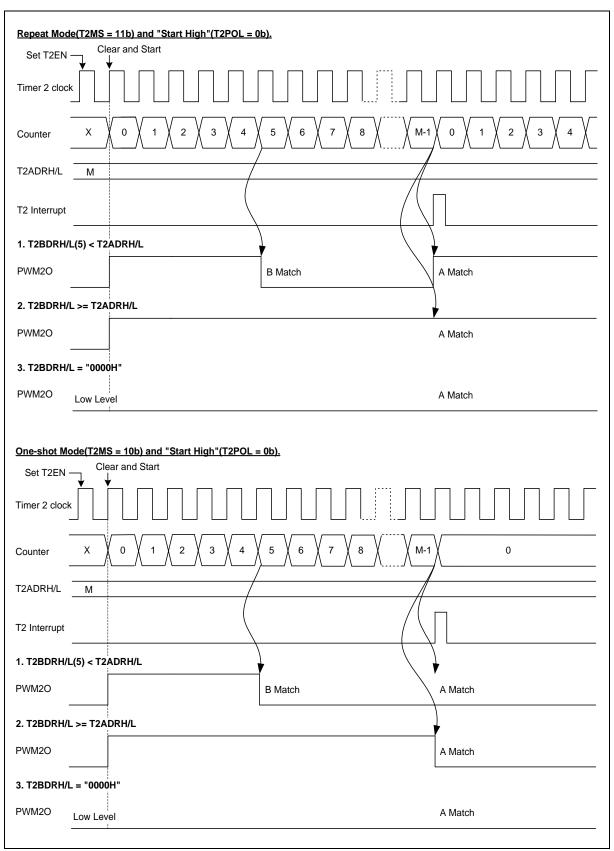


Figure 56. 16-bit PPG Mode Operation Example

12.3.4 16-bit timer 2 block diagram

In this section, a 16-bit timer 2 is described in a block diagram.

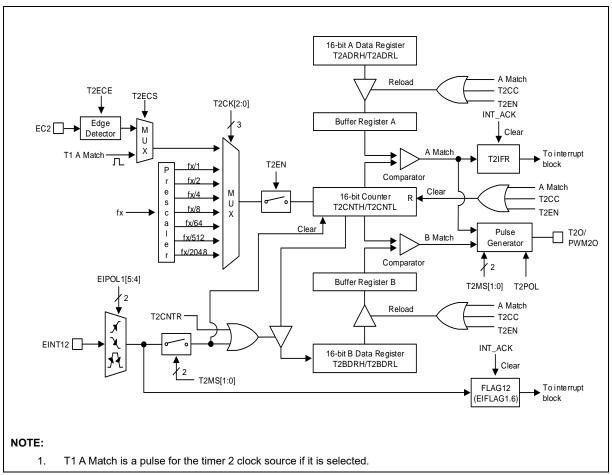


Figure 57. 16-bit Timer 2 Block Diagram

12.3.5 Register map

Table 20. TIMER 2 Register Map

			<u> </u>			
Name	Name Address		Default	Description		
T2ADRH	C5H	R/W	FFH	Timer 2 A Data High Register		
T2ADRL	C4H	C4H R/W FFH Timer 2 A Data I		Timer 2 A Data Low Register		
T2BDRH	C7H	R/W	FFH	Timer 2 B Data High Register		
T2BDRL	C6H	R/W FFH Timer 2 B Data Low Re		Timer 2 B Data Low Register		
T2CRH	C3H	R/W	00H	Timer 2 Control High Register		
T2CRL	C2H	R/W	00H	Timer 2 Control Low Register		

12.3.6 Register description

T2ADRH (Timer 2 A data High Register): C5H

	7	6	5	4	3	2	1	0
T2	2ADRH7	T2ADRH6	T2ADRH5	T2ADRH4	T2ADRH3	T2ADRH2	T2ADRH1	T2ADRH0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Initial value: FFH

T2ADRH[7:0] T2 A Data High Byte

T2ADRL (Timer 2 A Data Low Register): C4H

7	6	5	4	3	2	1	0
T2ADRL7	T2ADRL6	T2ADRL5	T2ADRL4	T2ADRL3	T2ADRL2	T2ADRL1	T2ADRL0
R/W							

Initial value: FFH

T2ADRL[7:0] T2 A Data Low Byte

NOTE: Do not write "0000H" in the T2ADRH/T2ADRL register

when PPG mode.

T2BDRH (Timer 2 B Data High Register): C7H

7	6	5	4	3	2	1	0
T2BDRH7	T2BDRH6	T2BDRH5	T2BDRH4	T2BDRH3	T2BDRH2	T2BDRH1	T2BDRH0
R/W							

Initial value: FFH

T2BDRH[7:0] T2 B Data High Byte

T2BDRL (Timer 2 B Data Low Register): C6H

7	6	5	4	3	2	1	0
T2BDRL7	T2BDRL6	T2BDRL5	T2BDRL4	T2BDRL3	T2BDRL2	T2BDRL1	T2BDRL0
R/W							

Initial value: FFH

T2BDRL[7:0] T2 B Data Low

T2CRH (Timer 2ControlHigh Register): C3H

7	6	5	4	3	2	1	0
T2EN	_	T2MS1	T2MS0	ı	_	ı	T2CC
RW	_	R/W	RW	_	_	_	RW

Initial value: 00H

T2EN	Control Tin	ner 2					
	0	Timer 2	disable				
	1	Timer 2	enable (Counter clear and start)				
T2MS[1:0]	Control Tin	Control Timer 2 Operation Mode					
	T2MS1	T2MS0	Description				
	0	0	Timer/counter mode (T2O: toggle at A match)				
	0	1	Capture mode (The A match interrupt can occur)				
	1	0	PPG one-shot mode (PWM2O)				
	1	1	PPG repeat mode (PWM2O)				
T2CC	Clear Time	r 2 Counter					
	0	No effect	t				
	1		Timer 2 counter (When write, automatically				
		cleared "	0" after being cleared counter)				

T2CRL (Timer 2ControlLow Register): C2H

7	6	5	4	3	2	1	0
T2CK2	T2CK1	T2CK0	T2IFR	T2ECS	T2POL	T2ECE	T2CNTR
R/W	R/W	R/W	R/W	R/W	RW	R/W	RW

Initial value: 00H

T2CK[2:0]	Select Ti	mer 2 clock	source. fx	is main system clock frequency				
	T2CK2	T2CK1	T2CK0	Description				
	0	0	0	Fx2048				
	0	0	1	fx/512				
	0	1	0	fx/64				
	0	1	1	fx/8				
	1	0	0	fx/4				
	1	0	1	fx/2				
	1	1	0	fx/1				
	1	1	1	Selected clock by T2ECS bit				
T2IFR			Match Interrupt occurs, this bit becomes '1'. For clearing bit, this bit or auto clear by INT_ACK signal. Writing "1" has no					
	0	T2 i	nterrupt no	generation				
	1	T2 i	nterrupt ger	neration				
T2ECS	Timer 2 B	External Clo	ock Selection	on				
	0	Select external clock (EC2)						
	1	Sele	ect Timer 1	A Match				
T2POL	T2O/PW	M2O Polari	ity Selection	1				
	0	Star	t High (T2C	0/PWM2O is low level at disable)				
	1	Star	t Low (T2O	/PWM2O is high level at disable)				
T2ECE	Timer 2 B	External Clo	ock Edge Se	election				
	0	Exte	ernal clock f	alling edge				
	1	Exte	ernal clock r	ising edge				
T2CNTR	Timer 2 (Counter Re	ad Control					
	0	No e	effect					
	1			er value to the B data register (When cally cleared "0" after being loaded)				

13. Buzzer driver

A buzzer of A96G166/A96A166/A96S166 consists of 8-bit counter, a buzzer data register (BUZDR), and a buzzer control register (BUZCR). It outputs square wave (61.035 Hz to 125.0 kHz @ 8 MHz) through P11/AN8/EINT6/EC1/BUZO pin, and its buzzer data register (BUZDR) controls the buzzer frequency (refer to the following expression). In a buzzer control register (BUZCR), BUCK[2:0] bits select a source clock divided by prescaler.

$$f_{\text{BUZ}}(\text{Hz}) = \frac{OscillatorFrequency}{2 \times PrescalerRatio \times (BUZDR + 1)}$$

BUZDR[7:0]	Buzzer Frequency (kHz)								
B02BR[1.0]	BUZCR[3:1]=000	BUZCR[3:1]=001	BUZCR[3:1]=010	BUZCR[3:1]=011					
0000_0000	125 kHz	62.5 kHz	31.25 kHz	15.625 kHz					
0000_0001	62.5 kHz	31.25 kHz	15.625 kHz	7.812 kHz					
1111_1101	492.126 Hz	246.063 Hz	123.031 Hz	61.515 Hz					
1111_1110	490.196 Hz	245.098 Hz	122.549 Hz	61.274 Hz					
1111_1111	488.281 Hz	244.141 Hz	122.07 Hz	61.035 Hz					

Table 21. Buzzer Frequency at 8 MHz

13.1 Buzzer driver block diagram

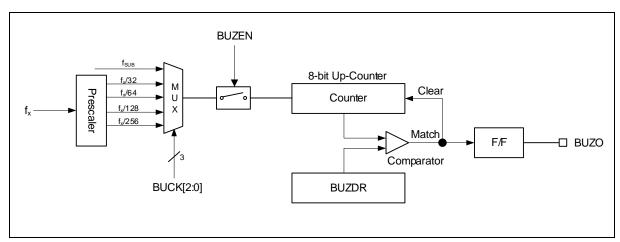


Figure 58. Buzzer Driver Block Diagram

13.2 Register map

Table 22. Buzzer Driver Register Map

				<u> </u>
Name	Address	Address Direction Default		Description
BUZDR	8FH	R/W	FFH	Buzzer Data Register
BUZCR	97H	R/W	00H	Buzzer Control Register

13.3 Register description

BUZDR (Buzzer Data Register): 8FH

7	6	5	4	3	2	1	0
BUZDR7	BUZDR6	BUZDR5	BUZDR4	BUZDR3	BUZDR2	BUZDR1	BUZDR0
RW							

Initial value: FFH

BUZDR[7:0] This bits control the Buzzer frequency

Its resolution is 00H ~ FFH

BUZCR (Buzzer Control Register): 97H

7	6	5	4	3	2	1	0
_	_	_	_	BUCK2	BUCK1	BUCK0	BUZEN
_	_	_	_	RW	RW	RW	RW

Initial value: 00H

BUCK[1:0]	Buzzer D	Buzzer Driver Source Clock Selection					
	BUCK2	BUCK1	BUCK0	Description			
	0	0	0	fx/32			
	0	0	fx/64				
	0	1	0	fx/128			
	0	1	1	fx/256			
	1	X X f _{SUB} (External Sub					
BUZEN	Buzzer Driver Operation Control						

0 Buzzer Driver disable1 Buzzer Driver enable

NOTE:

1. fx: System clock oscillation frequency.

14. 12-bit ADC

Analog-to-digital converter (ADC) of A96G166/A96A166/A96S166 allows conversion of an analog input signal to corresponding 12-bit digital value. This A/D module has eight analog inputs. Output of the multiplexer becomes input into the converter which generates the result through successive approximation.

The A/D module has four registers which are the A/D converter control high register (ADCCRH), A/D converter control low register (ADCCRL), A/D converter data high register (ADCDRH), and A/D converter data low register (ADCDRL).

ADSEL[3:0] bits are used to select channels to be converted. To execute A/D conversion, TRIG[2:0] bits should be set to 'xxx'. Registers ADCDRH and ADCDRL contain the result of A/D conversion. When the conversion is completed, the result is loaded into ADCDRH and ADCDRL, A/D conversion status bit AFLAG is set to '1', and A/D interrupt is set. During the A/D conversion, AFLAG bit is read as '0'.

14.1 Conversion timing

A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 12 clocks to set up A/D conversion. Therefore, total of 58 clocks are required to complete a 12-bit conversion: For example, when fxx/8 is selected for conversion clock with a 12 MHz fxx clock frequency, one clock cycle is 0.66µs, and each bit conversion requires 4 clocks. The conversion rate is calculated as follows:

4 clocks/bit × 12 bits + set-up time = 60 clocks ADC Conversion Time = ADCLK * 60 cycles

Please remember that the A/D converter requires at least 7.5us for conversion time, so the conversion time must be set bigger than 7.5us.

14.2 Block diagram

In this section, the 12-bit ADC is described in a block diagram, and an analog input pin and a power pin with capacitors respectively are introduced.

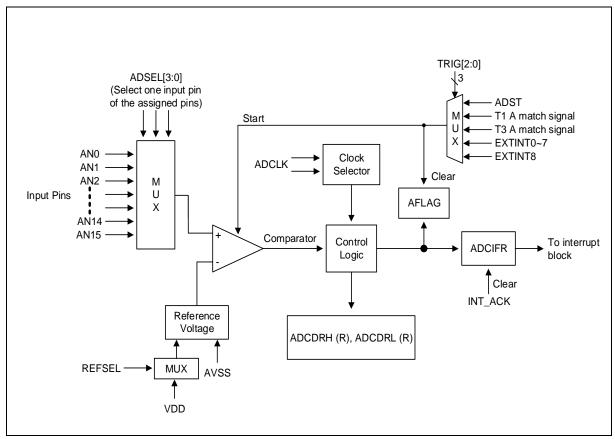


Figure 59. 12-bit ADC Block Diagram

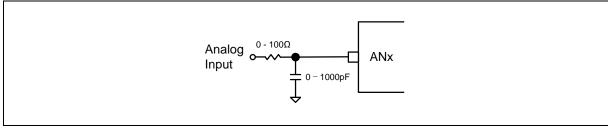


Figure 60. A/D Analog Input Pin with a Capacitor

14.3 ADC operation

In this section, control registers and align bits are introduced in Figure 61, and ADC operation flow sequence is introduced in Figure 62.

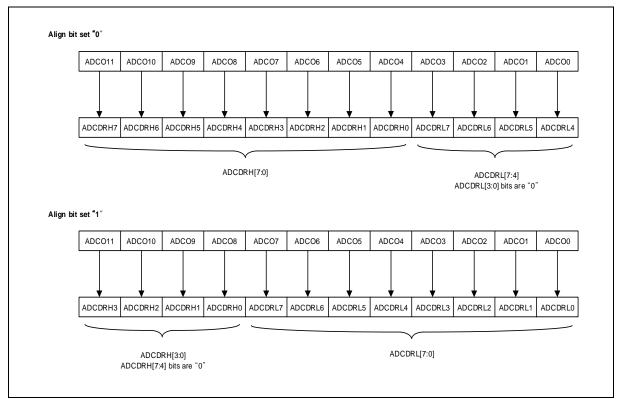


Figure 61. Control Registers and Align Bits

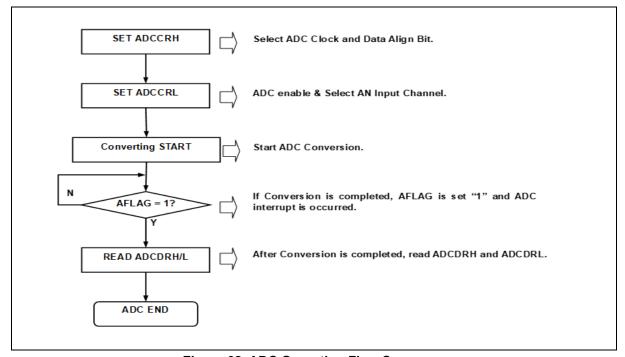


Figure 62. ADC Operation Flow Sequence

14.4 Register map

Table 23. ADC Register Map

Name	Address	Direction	Default	Description
ADCDRH	9FH	R	xxH	A/D Converter Data High Register
ADCDRL	9EH	R	xxH	A/D Converter Data Low Register
ADCCRH	9DH	R/W	01H	A/D Converter Control High Register
ADCCRL	9CH	R/W	00H	A/D Converter Control Low Register

14.5 Register description

ADCDRH (A/D Converter Data High Register):9FH

7	6	5	4	3	2	1	0
ADDM11	ADDM10	ADDM9	ADDM8	ADDM7	ADDM6	ADDM5	ADDM4
				ADDL11	ADDL10	ADDL9	ADDL8
R	R	R	R	R	R	R	R

Initial value: xxH

ADDM[11:4] MSB align, A/D Converter High Data (8-bit)
ADDL[11:8] LSB align, A/D Converter High Data (4-bit)

ADCDRL (A/D Converter Data Low Register): 9EH

7	6	5	4	3	2	1	0
ADDM3	ADDM2	ADDM1	ADDM0				
ADDL7	ADDL6	ADDL5	ADDL4	ADDL3	ADDL2	ADDL1	ADDL0
R	R	R	R	R-	R	R	R

Initial value: xxH

ADDM[3:0] MSB align, A/D Converter Low Data (4-bit)
ADDL[7:0] LSB align, A/D Converter Low Data (8-bit)

ADCCRH (A/D Converter High Register): 9DH

7	6	5	4	3	2	1	0
ADCIFR	IREF	TRIG2	TRIG1	TRIG0	ALIGN	CKSEL1	CKSEL0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Initial	l value: 01H

				Initial value: 01H			
ADCIFR		C interrupt occurs, this bit becomes '1'. For clearing bit, this bit or auto clear by INT_ACK signal. Writing "1" has					
	0	ADC Inter	rupt no ger	neration			
	1	ADC Inter	rupt genera	ation			
IREF	Select into	ernal voltage	reference.				
	0	External in	nput signal	source select			
	1	Test only					
TRIG[2:0]	A/D Trigg	er Signal Sel	lection				
	TRIG2	TRIG1	TRIG0	Description			
	0	0	0	ADST			
	0	0	1	Timer 0 A match signal			
	0	1	0	Timer 2 A match signal			
	0	1	1	EINT0~4			
	1	0	0	EINT5			
	1	0	1	EINT6			
	Other Val	ues		Not used			
ALIGN	A/D Conv	erter data ali	gn selectio	n.			
	0	MSB aligr	n (ADCDRH	I[7:0], ADCDRL[7:4])			
	1	LSB align	(ADCRDH	[3:0], ADCDRL[7:0])			
CKSEL[1:0]	A/D Conv	erter Clock s	election				
	CKSEL1	CKSEL0	Descript	ion			
	0	0	fx/1				
	0	1	fx/2				
	1	0	fx/4				
	1	1	fx/8				

NOTES:

- 1. fx: system clock
- 2. ADC clock should use below 8 MHz

ADST

ADCCRL (A/D Converter Counter Low Register): 9CH

7	6	5	4	3	2	1	0
STBY	ADST	REFSEL	AFLAG	ADSEL3	ADSEL2	ADSEL1	ADSEL0
RW	RW	RW	R	RW	RW	RW	RW

Initial value: 00H

STBY Control Operation of A/D

(The ADC module is automatically disabled at stop mode)

0 ADC module disable1 ADC module enable

Control A/D Conversion stop/start.

O No effect

1 ADC Conversion Start and auto clear

REFSEL A/D Converter Reference Selection

0 Internal Reference (VDD)

1 Reserved

AFLAG A/D Converter Operation State (This bit is cleared to '0' when the

STBY bit is set to '0' or when the CPU is at STOP mode)

0 During A/D Conversion1 A/D Conversion finished

ADSEL[3:0] A/D Converter input selection

	•			
ADSEL3	ADSEL2	ADSEL1	ADSEL0	Description
0	0	0	0	AN0
0	0	0	1	AN1
0	0	1	0	AN2
0	0	1	1	AN3
0	1	0	0	AN4
0	1	0	1	AN5
0	1	1	0	AN6
0	1	1	1	AN7
1	0	0	0	AN8
1	0	0	1	AN9
1	0	1	0	AN10
1	0	1	1	AN11
1	1	0	0	AN12
1	1	0	1	AN13
1	1	1	0	AN14
1	1	1	1	VDC1.55

15. I2C

I2C is one of industrial standard serial communication protocols, which uses 2 bus lines such as Serial Data Line (SDA) and Serial Clock Line (SCL) to exchange data. Because both SDA and SCL are open-drain outputs, each line needs a pull-up resistor respectively.

Their features are listed as shown below:

- Compatible with I2C bus standard
- Multi-master operation
- Up to 400 kHz data transfer speed
- 7 bit address
- · Support 2 slave addresses
- Both master and slave operation
- · Bus busy detection

15.1 Block Diagram

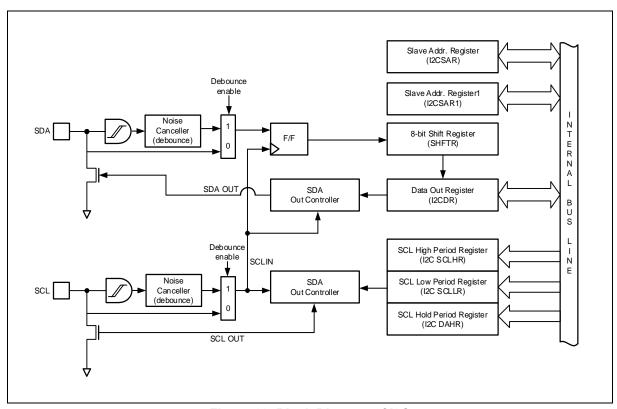


Figure 63. Block Diagram of I2C

15.2 Bit transfer

Data on the SDA line must be stable during HIGH period of the clock, SCL. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. The exceptions are START(S), repeated START (Sr) and STOP (P) condition where data line changes when clock line is high.

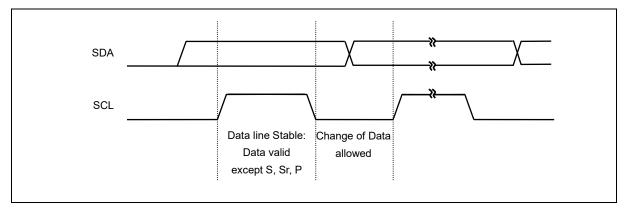


Figure 64. Bit Transfer on the I2C Bus

15.3 Start/ repeated start/ stop

One master can issue a START (S) condition to notice other devices connected to the SCL, SDA lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

- A high to low transition on the SDA line while SCL is high defines a START (S) condition.
- A low to high transition on the SDA line while SCL is high defines a STOP (P) condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, i.e., the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

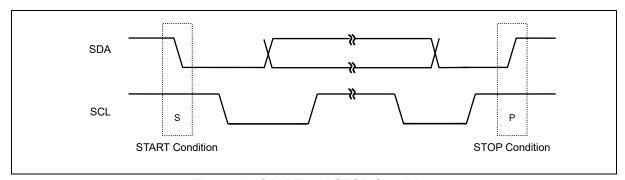


Figure 65. START and STOP Condition

15.4 Data transfer

Every byte on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.

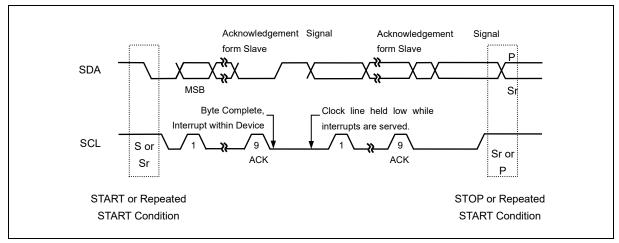


Figure 66. Data Transfer on the I2C Bus

15.5 Acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA line (Data Packet).

The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

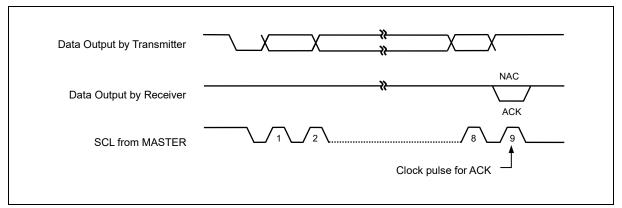


Figure 67. Acknowledge on the I2C Bus

15.6 Synchronization/ arbitration

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL line. This means that a HIGH to LOW transition on the SCL line will cause the devices concerned to start counting off their LOW period and it will hold the SCL line in that state until the clock HIGH state is reached. However the LOW to HIGH transition of this clock may not change the state of the SCL line if another clock is still within its LOW period. In this way, a synchronized SCL clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. Arbitration takes place on the SDA line, while the SCL line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output state because the level on the bus doesn't correspond to its own level. Arbitration continues for many bits until a winning master gets the ownership of I²C bus. Its first stage is comparison of the address bits.

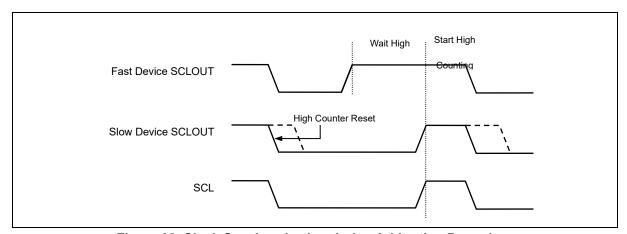


Figure 68. Clock Synchronization during Arbitration Procedure

Figure 69. Arbitration Procedure of Two Masters

15.7 Block operation

The I2C block as peripheral design is independently operating with main CPU operation. The operation of I2C block does a byte unit of I2C frame. After finishing a byte operation (transmit/receive data and clock) on I2C bus system, I2C block generate I2C interrupt for next byte operation. The I2C Interrupt service manage I2C block with the SFR registers, data load/read register (I2CDR) from/to I2C bus system, block control register (I2CMR), the state register (I2CSR) contained operation result. An operation unit of I2C H/W block generates/ receive 9 SCL clock that are for 8 bits data and an ACK. I2C block send / receive ACK signal at 9th clock of SCL according to I2C specification.

The I2C application software initialize I2C block condition depended on clock system, I2C devices condition after system power on.

An application S/W prepares I2C bus communication resource on RAM buffers. If it is to set the start flag in I2CMR register. I2C block start to generate start signal and send a Slave address to slave device. All steps of I2C communication service except start signal and slave address is done by H/W block and I2C Interrupt service. Therefore main application software can reduce time resource while I2C Data write/read operation.

I2C block design supports both functions of master/ Slave on the same block. In case of Masker device it generate SCL clock to slave device and the case of slave mode receive SCL clock from master device.

I2C block decide SDA data direction with the data direction bit (R/\overline{W}) of device address in both cases of master and slave mode (TMODE bit 0-> Receive, 1-> Transmit).

NOTE:

1. When an I2C interrupt is generated by I2C block, IIF flag in I2CMR register is set and it is cleared by writing any value to I2CSR. When I2C interrupt occurs, the SCL line is hold LOW for reading/writing I2CDR register and control I2CMR until writing any value to I2CSR. When the IIF flag is set, the I2CSR contains a value for the state of the I2C bus. According to the value in I2CSR, software can decide what to do next.

I2C can operate in four modes by configuring master/slave, transmitter/receiver, as described in the following sections.

15.7.1 I2C block initialization process

After power ON, it is necessary to initialize the I2C block because the I2C block provides I2C Slave device service.

1. The I2C block starts operation (operation clock active) by setting the IICEN bit of the I2CMR register.

```
I2CMR = IICEN; // I2C block enable
```

2. Reset the I2C block by setting the RESET bit of the I2CMR register.

```
I2CMR = RESET; // Reset I2C block by S/W
```

3. Depending on I2C devices, I2C SCL max clock will be defined and the value of SCL low /high time and SDA hold time will be written on the I2CSCLLR, the I2CSCLHR, and the I2CSDAHR as shown in Figure 70.

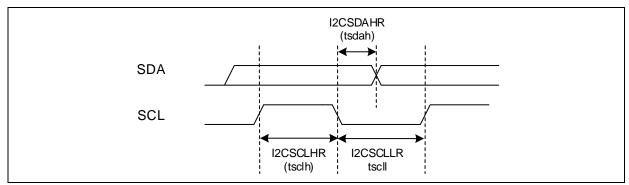


Figure 70. I2C SCL Max Clock, SCL, SDA Settings

The timing values are calculated as the follow formula

```
tscll = tsysclk (4xI2CSCLLR +1) \rightarrow SCL clock low time

tsclh = tsysclk (4xI2CSCLHR +3) \rightarrow SCL clock High time

tsdah = tsysclk (I2CSDAHR +4) \rightarrow SDA data hold time after falling edge of SCL
```

For example, if the I2C clock of 100 kHz and the system clock of 4 MHz are used, each of tscll and tsclhtimes is 5us, and tsdah is 2.5 us.

4. Decide I2C Slave device address and write the address to I2CSAR

```
I2CSAR = SELF_ADDRESS;
```

Finally be ready to get I2C data from I2C bus system as a slave device by configuring the I2C interrupt enable bit, the I2C block enable bit, and the ACK enable bit of the I2CMR register.

```
I2CMR = IICEN+INTEN+ACKEN;  // I2C interrupt enable
```


^{*} tsysclk = system clock timing

15.7.2 I2C interrupt service

I2C interrupt service is used for the next management action and the data load/read from the I2C block after I2C H/W block operation (as I2C Master/ Slave device). Because the I2C block processes the I2C data in a byte unit when receiving or writing, the I2C block makes the I2C interrupt for the next action of the I2C block. When the interrupt occurs, the I2C block serves for the state of I2C bus and stores the operation result in the I2CSR register. Interrupt service looks both registers of the I2CMR and the I2CSR, and does the next steps (such as saving a data from I2CDR, loading a data to I2CDR, making STOP condition or Re-start condition, and so on).

The I2C Interrupt occurs when the following cases are finished:

- 1. As an I2C master device,
 - Sending a byte on I2CDR register after setting Start bit. (GCALL interrupt)
 - Sending a byte on I2CDR register after write to I2CSR. (TEND interrupt)
 - Receiving a byte on I2CDR after write to I2CSR (TEND interrupt)
 - Occurring an arbitration loss (MLOST interrupt)
 - Detecting Stop condition (STOP interrupt)
- 2. As an I2C slave device,
 - Getting start condition and same device address from a Master (SSEL interrupt)
 - Sending a byte on I2CDR register after write to I2CSR. (TEND interrupt)
 - Receiving a byte on I2CDR after write to I2CSR (TEND interrupt)
 - Detecting Stop condition (STOP interrupt)

Depending on the above results, the I2C service provides services such as reading/writing data from/to I2CDR, generating STOP condition, making the next I2C block action by writing a data to I2CSR register. Bus arbitration of the I2C block processes from I2C bus start condition to the last data of I2C data frame. During arbitration loss (MLOST interrupt), the I2C interrupt service makes I2C block Reset for bus free.

15.7.3 Master transmitter

Main software prepares to write/read data to/from the Slave I2C device. The software has to be ready to get number of data with internal RAM or sending data on internal RAM according to I2C bus protocol type of the Slave device.

It writes salve address to I2CDR register in the I2C block, then, if it sets a START bit of the I2CMR register, the I2C block sends the slave address with SCL clock to the Slave device. The I2C block takes master mode (MASTER bit -> 1) and takes the read/write state (TMODE bit, read (0), write (1)) according to the data direction bit (R/\overline{W}) of device address.

Example software for the master mode is introduced below:

Master write

I2C interrupt service

Master Read (without sub address of Slave device)

```
I2CMR = IICEN+INTEN;
                                 // start generate
I2CDR = Slave Address + Read mode;
                                            // load target Salve Address
I2CMR |= SRT;
                                             // generate start condition
[I2C Interrupt Service]
If (Master mode) and ( TMODE)
If( ACK and GCALL )
  I2CMR |= ACKEN
                                            // After receive data, generate ACK
I2CSR = 0xFF;
                                            // Byte transmit start
ELSE
if ACK and TEND )
 If ( Not End of Data )
If(LAST Data)
      I2CMR &= ~ACKEN
                                            // After receive data, generate ACK
    I2C_buffer = I2CDR
    I2CSR = 0xFF;
                                            // Byte transmit start
FLSF
If( ~ACK and TEND)
    I2CMR = IICEN+INTEN+STP;
                                            // STOP generation
  I2CSR = 0xFF;
                                             // Byte transmit start
  Initialize I2C block
                                            // if have ACK error, any error
End of I2C interrupt service
```


15.7.4 Slave receiver

When both the IIC and the INTEN of the I2CMR are enabled, the I2C block monitors I2C bus lines for the start condition and the self-address with I2CSAD. To have both signals of start signal and getting self-address, the I2C block generates I2C interrupts with the status bits (SSEL, BUSY RXACK, SLAVE mode, and so on) after sending an ACK signal. At the time, the I2C block controls SCL line to low state to be ready to get/handle the next I2C data.

By the I2C interrupt service if the I2C block is ready for the next step, it is to release the SCL line to high state to get the next SCL clock from the master. The I2C block decides the bus direction (data receive/transmission) by using a data direction (R/\overline{W}) bit in Slave address from master. The state of bus direction is set in the TMOD bit of the I2CSR register.

If the master generates Stop condition, the I2C block receives STOP condition and generates the I2C interrupt. The I2C interrupt service writes any data to I2CSR and finishes the Slave operation.

Example code for the slave mode is introduced below:

I2C Interrupt service

```
I2C Slave service
if(Getting SSEL and send ACK)
                                             // received Self-address form master
if(TMODE)
                                             // data direction (R/₩)
I2CDR=I2C_TXData
                                             // Transmission mode, Load data
            I2C RXData =I2CDR
else
if (Get STOP condition)
else
if (TMODE)
                                             // data direction (R/₩)
        I2CDR= I2C_TXData
                                             // Transmission mode, Load data
        I2C_RXData =I2CDR
                                             // Save received Data
  I2CSR=0xff;
```


15.8 Register Map

Table 24. I2C Register Map

				-
Name	Address	Direction	Default	Description
I2CMR	E1H	R/W	00H	I2C Mode Control Register
I2CSR	E2H	R	00H	I2C Status Register
I2CSCLLR	E3H	R/W	3FH	SCL Low Period Register
I2CSCLHR	E4H	R/W	3FH	SCL High Period Register
I2CSDAHR	E5H	R/W	01H	SDA Hold Time Register
I2CDR	E6H	R/W	FFH	I2C Data Register
I2CSAR	E9H	R/W	00H	I2C Slave Address Register
I2CSAR1	EAH	R/W	00H	I2C Slave Address Register 1

15.9 I2C register description

I2CMR (I2C Mode Control Register): E1H

7	6	5	4	3	2	1	0
IIF	IICEN	RESET	INTEN	ACKEN	MASTER	STOP	START
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W

Initial value: 00H

IIF	This is interrupt flag bit.
	No interrupt is generated or interrupt is cleared
	1 An interrupt is generated
IICEN	Enable I2C Function Block (by providing clock)
HOLIV	0 I2C is inactive
	1 I2C is active
RESET	Initialize internal registers of I2C.
RESET	-
INTEN	
INTEN	Enable interrupt generation of I2C.
	O Disable interrupt, operates in polling mode
	1 Enable interrupt
ACKEN	Controls ACK signal generation at ninth SCL period.
	NOTE:
	 ACK signal is output (SDA=0) for the following 3 cases.
	 A. When received address packet equals to SLA bits in I2CSAR
	B. When received address packet equals to value 0x00 with GCALL enabled
	C. When I2C operates as a receiver (master or slave)
	0 No ACK signal is generated (SDA=1)
	1 ACK signal is generated (SDA=0)
MASTER	Represent operating mode of I2C
	0 I2C is in slave mode
	1 I2C is in master mode
STOP	When I2C is master, generates STOP condition.
	0 No operation
	1 STOP condition is to be generated
START	When I2C is master, generates START condition.
	0 No operation
	o 110 operation

START or repeated START condition is to be generated

1

I2CSR (I2C Status Register): E2H

7	6	5	4	3	2	1	0
GCALL	TEND	STOP	SSEL	MLOST	BUSY	TMODE	RXACK
R	R	R	R	R	R	R	R

Initial value: 00H

GCALL	This bit has different meaning depending on whether I2C is master or slave. NOTE1						
	When I2C i	is a master, this bit represents whether it received AACK (CK) from slave.					
	When I2C i	is a slave, this bit is used to indicate general call.					
	0	No AACK is received (Master mode)					
	1	AACK is received (Master mode)					
	0	Received address is not general call address (Slave mode)					
	1	General call address is detected (Slave mode)					
TEND	This bit is s	set when 1-Byte of data is transferred completely. NOTE1					
	0	1 byte of data is not completely transferred					
	1	1 byte of data is completely transferred					
STOP	This bit is s	This bit is set when STOP condition is detected. NOTE1					
	0	No STOP condition is detected					
	1	STOP condition is detected					
SSEL	This bit is set when I2C is addressed by another master. NOTE1						
	0	I2C is not selected as slave					
	1	I2C is addressed by other master and acts as a slave					
MLOST	This bit rep	resents the result of bus arbitration in master mode. NOTE1					
	0	I2C maintains bus mastership					
	1	I2C has lost bus mastership during arbitration process					
BUSY	This bit refl	ects bus status.					
	0	I2C bus is idle, so any master can issue a START condition					
	1	I2C bus is busy					
TMODE	This bit is u	used to indicate whether I2C is transmitter or receiver.					
	0	I2C is a receiver					
	1	I2C is a transmitter					
RXACK	This bit sho	ows the state of ACK signal.					
	0	No ACK is received					
	1	ACK is generated at ninth SCL period					

NOTES:

- 1. One of these bits can be a source of an interrupt.
- When an I2C interrupt occurs except for STOP interrupt, the SCL line remains LOW. To release SCL, write arbitrary value to I2CSR.
- 3. When I2CSR is written, TEND, STOP, SSEL, LOST, RXACK are cleared.

I2CSCLLR (SCL Low Period Register): E3H

7	6	5	4	3	2	1	0
SCLL7	SCLL6	SCLL5	SCLL4	SCLL3	SCLL2	SCLL1	SCLL0
R/W							

Initial value: 3FH

SCLL[7:0]

This register defines the LOW period of SCL when I2C operates in master mode. The base clock is SCLK, the system clock, and the period is calculated by the formula : $tSCLK \times (4 \times SCLL + 1)$ where tSCLK is the period of SCLK

I2CSCLHR (SCL High Period Register): E4H

7	6	5	4	3	2	1	0
SCLH7	SCLH6	SCLH5	SCLH4	SCLH3	SCLH2	SCLH1	SCLH0
R/W							

Initial value: 3FH

SCLH[7:0]

This register defines the HIGH period of SCL when I2C operates in master mode. The base clock is SCLK, the system clock, and the period is calculated by the formula :tSCLKx $(4 \times SCLH + 3)$ where tSCLK is the period of SCLK.

So, the operating frequency of I2C master mode (fI2C) is calculated by the following equation.

$$f12C = \frac{1}{tSCLK \times (4(SCLL + SCLH) + 4)}$$

I2CSDAHR (SDA Hold Time Register): E5H

7	6	5	4	3	2	1	0
SDAH7	SDAH6	SDAH5	SDAH4	SDAH3	SDAH2	SDAH1	SDAH0
R/W							

Initial value: 01H

SDAH[7:0]

This register is used to control SDA output timing from the falling edge of SCL. Note that SDA is changed after tSCLK \times SDAH. In master mode, load half the value of SCLL to this register to make SDA change in the middle of SCL. In slave mode, configure this register regarding the frequency of SCL from master. The SDA is changed after tSCLK \times (SDAH + 4). So, to ensure normal operation in slave mode, the value tSCLK \times (SDAH + 4) must be smaller than the period of SCL.

I2CDR (I2C Data Register): E6H

7	6	5	4	3	2	1	0
ICD7	ICD6	ICD5	ICD4	ICD3	ICD2	ICD1	ICD0
R/W							

Initial value: FFH

ICD[7:0]

When I2C is configured as a transmitter, load this register with data to be transmitted. When I2C is a receiver, the received data is stored into this register.

I2CSAR (I2C Slave Address Register): E9H

7	6	5	4	3	2	1	0
SLA7	SLA6	SLA5	SLA4	SLA3	SLA2	SLA1	GCALLEN
R/W							

Initial value: 00H

SLA[7:1] These bits configure the slave address of this I2C module when

I2C operates in slave mode.

GCALLEN This bit decides whether I2C allows general call address or not

when I2C operates in slave mode.

0 Ignore general call address

1 Allow general call address

I2CSAR1 (I2C Slave Address Register 1): EAH

7	6	5	4	3	2	1	0
SLA7	SLA6	SLA5	SLA4	SLA3	SLA2	SLA1	GCALLEN
R/W							

Initial value: 00H

SLA[7:1] These bits configure the slave address of this I2C module when

I2C operates in slave mode.

GCALLEN This bit decides whether I2C allows general call address or not

when I2C operates in slave mode.

0 Ignore general call address

1 Allow general call address

16. USART 0/1

Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial communication device. A96G166/A96A166/A96S166 has two USART function blocks, USART0 and USART1 are absolutely same functionally.

Main features of the USART0/1 are listed below:

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Master or Slave Clocked Synchronous and SPI Operation
- Supports all four SPI Modes of Operation (Mode 0, 1, 2, 3)
- LSB First or MSB First Data Transfer @SPI mode
- High Resolution Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data bits and 1 or 2 Stop bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Digital Low Pass Filter
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous Communication Mode

The USART has three main parts such as a Clock generator, Transmitter and Receiver.

The Clock generation logic consists of a synchronization logic for external clock input used by synchronous or SPI slave operation, and a baud rate generator for asynchronous or master (synchronous or SPI) operation.

The Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. Write buffer allows a continuous transfer of data without any delay between frames.

The Receiver is the most complex part of the USART module due to its clock and data recovery units. The recovery unit is used for asynchronous data reception. In addition to the recovery unit, the receiver includes a parity checker, a shift register, a two level receive FIFO (UDATA) and a control logic.

The Receiver supports the same frame formats as the transmitter. It can detect Frame Error, Data OverRun and Parity Errors.

16.1 Block diagram

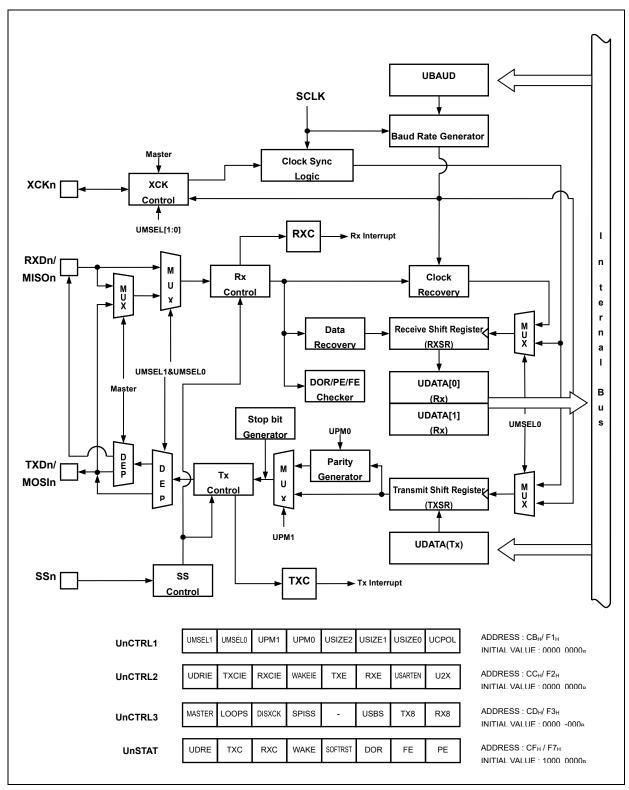


Figure 71. USARTn Block Diagram (n=0, 1)

16.2 Clock generation

The Clock generation logic generates a base clock signal for the transmitter and the receiver. The USART supports four modes of clock operation such as Normal Asynchronous mode, Double Speed Asynchronous mode, Master Synchronous mode, and Slave Synchronous mode.

Clock generation scheme for Master SPI and Slave SPI mode is the same as Master Synchronous and Slave Synchronous operation mode. The UMSEL[1:0] bit in UnCTRL1 register selects between asynchronous and synchronous operation. Asynchronous Double Speed mode is controlled by the U2X bit in the UnCTRL2 register. The MASTER bit in UnCTRL2 register controls whether the clock source is internal (Master mode, output port) or external (Slave mode, input port). The XCKn pin is only active when the USART operates in Synchronous or SPI mode.

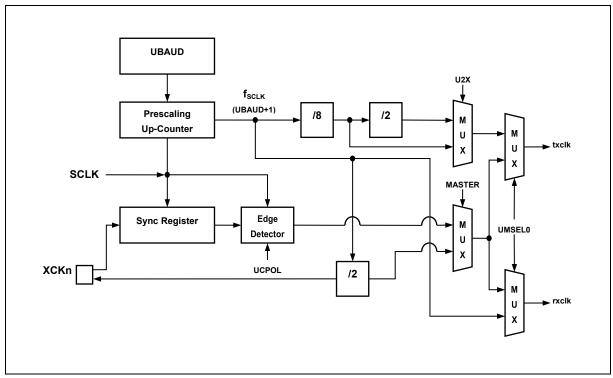


Figure 72. Block Diagram of Clock Generation

Table 25 contains equations for calculating the baud rate (in bps).

Table 25. Equations for Calculating Baud Rate Register Settings

Operating mode	Equation for calculating baud rate
Asynchronous normal mode (U2X=0)	Baud Rate = $\frac{\text{fSCLK}}{16(\text{UBAUDx} + 1)}$
Asynchronous double speed mode (U2X=1)	Baud Rate = $\frac{\text{fSCLK}}{8(\text{UBAUDx} + 1)}$
Synchronous or SPI master mode	Baud Rate = $\frac{\text{fSCLK}}{2(\text{UBAUDx} + 1)}$

16.3 External clock (XCK)

External clocking is used by the synchronous or SPI slave modes of operation. External clock input from the XCK pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must then pass through an edge detector before it can be used by the Transmitter and Receiver.

This process introduces a two CPU clock period delay and the maximum frequency of the external XCK pin is limited by the following equation:

$$fXCK = \frac{fSCLK}{4}$$

, where fXCK is frequency of XCK, and fSCLK is frequency of main system clock (SCLK).

16.4 Synchronous mode operation

When synchronous mode or SPI mode is used, the XCKn pin will be used as either clock input (slave) or clock output (master). The dependency between a clock edge and data sampling or data change is the same. The basic principle is that data input on RXDn (MISOn in SPI mode) pin is sampled at the opposite XCK clock edge at the edge in the data output on TXDn (MOSIn in SPI mode) pin is changed.

UCPOL bit in UnCTRL1 register selects which XCKn clock edge is used for data sampling and which is used for data change. As shown in Figure 73, when UCPOL is zero, data will be changed at XCKn rising edge and sampled at XCKn falling edge.

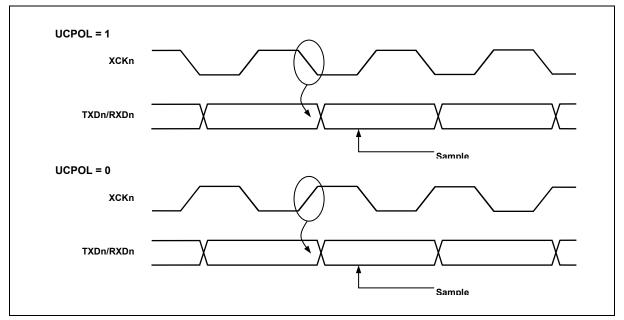


Figure 73. Synchronous Mode XCKn Timing (n=0, 1)

16.5 Data format

A serial frame is defined to consist of one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking.

USART2 supports all 30 combinations of the followings as a valid frame format.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). The next data bits, up to a total of nine, are succeeding, ending with the most significant bit (MSB). If enabled, the parity bit is inserted after the data bits, before the stop bits. A high to low transition on data pin is considered as start bit.

When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The next figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

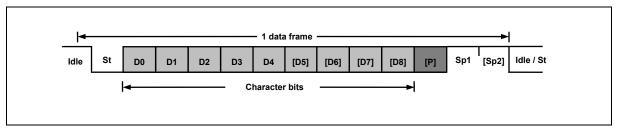


Figure 74. A Frame Format

Single data frame consists of the following bits

- Idle: No communication on communication line (TxD2/RxD2)
- St: Start bit (Low)
- Dn: Data bits (0~8)
- Parity bit: even parity, odd parity, no parity
- Stop bit(s): 1 bit or 2 bits

A frame format of the USARTn is set by USIZE[2:0], UPM[1:0] and USBS bits in UnCTRL1, UnCTRL3 register. The Transmitter and the Receiver use the same settings.

16.6 Parity bit

Parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclusive-or is inverted. The parity bit is located between St + bits and first stop bit of a serial frame.

• Peven = D_{n-1} ^ ... ^ D₃ ^ D₂ ^ D₁ ^ D₀ ^ 0

P_{odd} = D_{n-1} ^ ... ^ D₃ ^ D₂ ^ D₁ ^ D₀ ^ 1

Peven: Parity bit using even parity

P_{odd}: Parity bit using odd parity

D_n: Data bit n of the character

16.7 USART transmitter

USART transmitter is enabled by setting the TXE bit in UnCTRL2 register. When the Transmitter is enabled, normal port operation of TXDn pin is overridden by serial output pin of the USART. Baud rate, operation mode and frame format must be setup once before doing any transmissions.

If synchronous or SPI operation is used, a clock on the XCKn pin will be overridden and used as a transmission clock. If USART operates in SPI mode, SSn pin is used as SSn input pin in slave mode or can be configured as SSn output pin in master mode. This can be done by setting SPISS bit in UCTRL3 register.

16.7.1 Sending Tx data

Data transmission is initiated by loading the transmit buffer (UDATA register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted.

When the shift register is loaded with new data, it will transfer one complete frame at the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode (USIZE[2:0] = 7), the ninth bit must be written to the TX8 bit in UnCTRL3 register before loading transmit buffer (UDATA register).

16.7.2 Transmitter flag and interrupt

USART transmitter has 2 flags which indicate its state. One is USART Data Register Empty (UDRE) and the other is Transmit Complete (TXC). Both flags can be used as interrupt sources.

UDRE flag indicates whether the transmit buffer is ready to be loaded with new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains transmission data which has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is not valid.

When the Data Register Empty Interrupt Enable (UDRIE) bit in UnCTRL2 register is set and the Global Interrupt is enabled, USART Data Register Empty Interrupt is generated while UDRE flag is set.

Transmit Complete (TXC) flag bit is set when the entire frame in the transmit shift register has been shifted out and there are no more data in the transmit buffer. The TXC flag is automatically cleared when the Transmit Complete Interrupt service routine is executed, or it can be cleared by writing '0' to TXC bit in USTAT register.

When the Transmit Complete Interrupt Enable (TXCIE) bit in UnCTRL2 register is set and the Global Interrupt is enabled, USART Transmit Complete Interrupt is generated while TXC flag is set.

16.7.3 Parity generator

Parity Generator calculates the parity bit for the sending serial frame data. When parity bit is enabled (UPM[1] = 1), the transmitter control logic inserts the parity bit between the bits and the first stop bit of the sending frame.

16.7.4 Disabling transmitter

Disabling the Transmitter by clearing the TXE bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXDn pin is used as normal General Purpose I/O (GPIO) or primary function pin.

16.8 USART receiver

The USART Receiver is enabled by setting the RXE bit in the UnCTRL1 register. When the Receiver is enabled, the normal pin operation of the RXDn pin is overridden by the USART as the serial input pin of the Receiver. The baud-rate, mode of operation and frame format must be set before serial reception. If synchronous or SPI operation is used, the clock on the XCKn pin will be used as transfer clock. If USART operates in SPI mode, SSn pin is used as SSn input pin in slave mode or can be configured as SSn output pin in master mode. This can be done by setting SPISS bit in UnCTRL3 register.

16.8.1 Receiving Rx data

When USART is in synchronous or asynchronous operation mode, the Receiver starts data reception when it detects a valid start bit (LOW) on RXDn pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of XCKn (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received.

Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the Receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the UDATA register.

If 9-bit characters are used (USIZE[2:0] = 7), the ninth bit is stored in the RX8 bit position in the UnCTRL3 register. The 9th bit must be read from the RX8 bit before reading the low 8 bits from the UDATA register. Likewise, the error flags FE, DOR, PE must be read before reading the data from UDATA register. This is because the error flags are stored in the same FIFO position of the receive buffer.

16.8.2 Receiver flag and interrupt

The USART Receiver has one flag that indicates the Receiver state. Receive Complete (RXC) flag indicates whether there are unread data present in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the Receiver is disabled (RXE=0), the receiver buffer is flushed and the RXC flag is cleared.

When the Receive Complete Interrupt Enable (RXCIE) bit in the UnCTRL2 register is set and Global Interrupt is enabled, the USART Receiver Complete Interrupt is generated while RXC flag is set.

The USART Receiver has three error flags which are Frame Error (FE), Data OverRun (DOR) and Parity Error (PE). These error flags can be read from the USTAT register. As data received are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from UDATA register, read the USTAT register first which contains error flags.

The Frame Error (FE) flag indicates the state of the first stop bit. The FE flag is set when the stop bit was correctly detected as "1", and the FE flag is cleared when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

The Data OverRun (DOR) flag indicates data loss due to a receive buffer full condition. A DOR occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

The Parity Error (PE) flag indicates that the frame in the receive buffer had a Parity Error when received. If Parity Check function is not enabled (UPM[1] = 0), the PE bit is always read "0".

NOTE:

1. The error flags related to the receive operation are not used when USART is in SPI mode.

16.8.3 Parity checker

If Parity bit is enabled (UPM[1]=1), Parity Checker calculates parity of data bits of incoming frames and compares the result with the parity bit of the received serial frame.

16.8.4 Disabling receiver

In contrast to Transmitter, disabling the Receiver by clearing RXE bit makes the Receiver inactive immediately. When the Receiver is disabled the Receiver flushes the receive buffer and the remaining data in the buffer is all reset. The RXDn pin is not overridden the function of USART, so RXDn pin becomes normal GPIO or primary function pin.

16.8.5 Asynchronous data reception

To receive asynchronous data frame, the USART includes a clock and data recovery unit. The Clock Recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXDn pin.

The Data recovery logic samples incoming bits and low pass filters them, and this removes the noise of RXDn pin.

The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times the baud-rate for normal mode, and 8 times the baud rate for Double Speed mode (U2X=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the Double Speed mode.

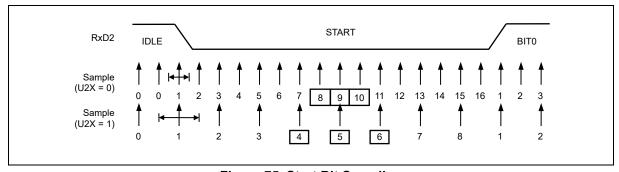


Figure 75. Start Bit Sampling

When the Receiver is enabled (RXE=1), the clock recovery logic tries to find a high to low transition on the RXDn line, the start bit condition. After detecting high to low transition on RXDn line, the clock recovery logic uses samples 8, 9, and 10 for Normal mode, and samples 4, 5, and 6 for Double Speed mode to decide if a valid start bit is received.

If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the Receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for Normal mode and 8 times for Double Speed mode. And uses sample 8, 9, and 10 to decide data value for Normal mode, samples 4, 5, and 6 for Double Speed mode.

If more than 2 samples have low levels, the received bit is considered to a logic 0 and more than 2 samples have high levels, the received bit is considered to a logic 1. Data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

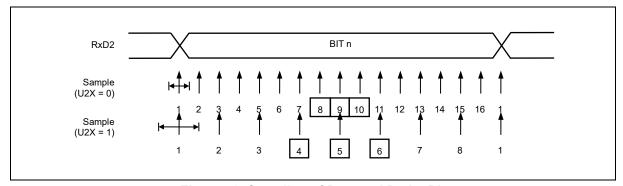


Figure 76. Sampling of Data and Parity Bit

A process for detecting stop bit is similar to the clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected. If not, a Frame Error flag will be set. After deciding whether a valid stop bit is received or not, the Receiver enters into idle state and monitors the RXDn line to check a valid high to low transition is detected (start bit detection).

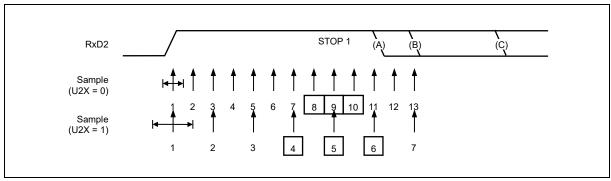


Figure 77. Stop Bit Sampling and Next Start Bit Sampling

16.9 SPI mode

The USARTn can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full duplex, three-wire synchronous data transfer
- Master or Slave operation
- Supports all four SPI modes of operation (mode0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When the SPI mode is enabled (UMSEL[1:0]=3), the Slave Select (SSn) pin becomes active low input in slave mode operation, or can be output in master mode operation if SPISS bit is set.

NOTE:

 During SPI mode of operation, the pin RXDn is renamed as MISOn and TXDn is renamed as MOSIn for compatibility to other SPI devices.

16.9.1 SPI clock formats and timing

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the USART has a clock polarity bit (UCPOL) and a clock phase control bit (UCPHA) to select one of four clock formats for data transfers. UCPOL selectively insert an inverter in series with the clock. UCPHA selects one of two different clock phase relationships between the clock and data. Note that UCPHA and UCPOL bits in UnCTRL1 register have different meanings according to the UMSEL[1:0] bits which decides the operating mode of USARTn.

Table 26 shows four combinations of UCPOL and UCPHA for SPI mode 0, 1, 2, and 3.

Table 26. CPOL Functionality

SPI Mode	UCPOL	UCPHA	Leading Edge	Trailing Edge
0	0	0	Sample (Rising)	Setup (Falling)
1	0	1	Setup (Rising)	Sample (Falling)
2	1	0	Sample (Falling)	Setup (Rising)
3	1	1	Setup (Falling)	Sample (Rising)

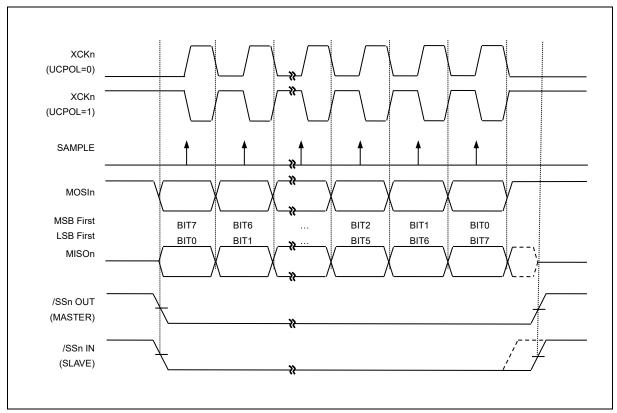


Figure 78. SPI Clock Formats when UCPHA = 0

When UCPHA=0, the slave begins to drive its MISOn output with the first data bit value when SSn goes to active low. The first XCKn edge causes both the master and the slave to sample the data bit value on their MISOn and MOSIn inputs, respectively.

At the second XCKn edge, the USARTn shifts the second data bit value out to the MOSIn and MISOn outputs of the master and slave, respectively. Unlike the case of UCPHA=1, when UCPHA=0, the slave's SSn input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SSn input.

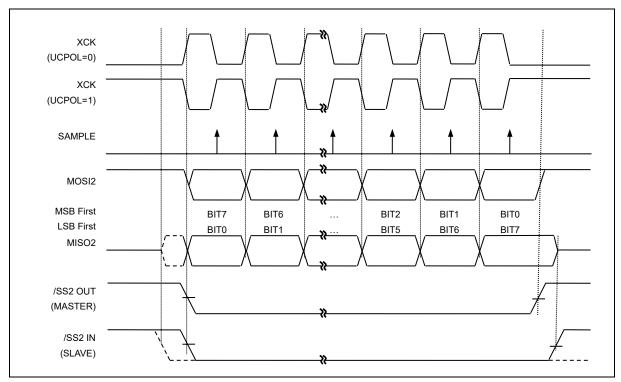


Figure 79. SPI Clock Formats when UCPHA = 1

When UCPHA=1, the slave begins to drive its MISOn output when SSn goes active low, but the data is not defined until the first XCKn edge. The first XCKn edge shifts the first bit of data from the shifter onto the MOSIn output of the master and the MISOn output of the slave.

The next XCKn edge causes both the master and slave to sample the data bit value on their MISOn and MOSIn inputs, respectively.

At the third XCKn edge, the USARTn shifts the second data bit value out to the MOSIn and MISOn output of the master and slave respectively. When UCPHA=1, the slave's SSn input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USARTn resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USARTn Data Register Empty flag (UDRE=1) and then writing a byte of data to the UDATA Register. In master mode of operation, even if transmission is not enabled (TXE=0), writing data to the UDATA register is necessary because the clock XCKn is generated from transmitter block.

16.10 Receiver time out (RTO)

This USART system supports the time out function. This function is occur the interrupts when stop bit are not in RX line during URTOC setting value. RTO count stops in RXD signal live state and RTO clear and start is executed by stop bit recognition.

Example condition is listed in Table 27

Table 27. Example Condition of RTO

	• sysclk = 16 MHz					
Condition	• Baud rate = 115,200 bps					
	Asynchronous Normal Mode (U2X = 0)					
Baud rate	sysclk / 16 x (UBAUD + 1)					
Calculated	• (1000000 / Target Baud rate) – 1 = 7.68					
UBAUD	• Error rate = 0.68					
Real baud rate at syscik 16 MHz	111,111 bps					
1 bit time	9us					
Maximum count time	9us * 65536(16bit count) = 589.8ms					

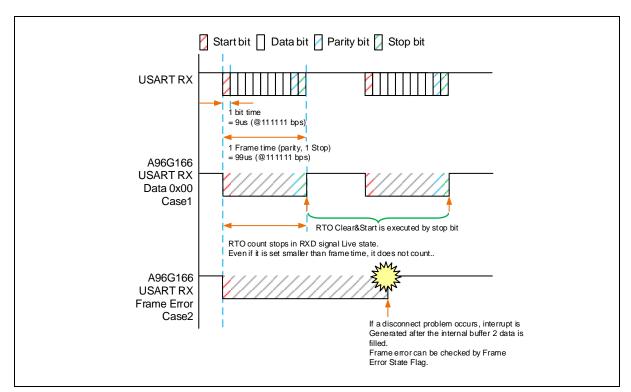


Figure 80. Example for RTO in USART

16.11 Register map

Table 28. USART Register Map

Name Address		Direction	Default	Description
UnCTRL1	CBH/F1H	R/W	00H	USART Control 1 Register
UnCTRL2	CCH/F2H	R/W	00H	USART Control 2 Register
UnCTRL3	CDH/F3H	R/W	00H	USART Control 3 Register
UnCTRL4	1018H/1019H	R/W	00H	USART Control 4 Register
UnSTAT	CFH/F8H	H R 80H USART		USART Status Register
UnBAUD	FCH/F5H	R/W	FFH	USART Baud Rate Generation Register
UnDATA	FDH/F6H	R/W	00H	USART Data Register
FPCRn	101AH/101DH	R/W	00H	USART Floating Point Counter Register
RTOCHn	101BH/101EH	R	00H	Receiver Time Out Counter High Register
RTOCLn	101CH/101FH	TH R 00H Receiver Time Out Counter Low Register		

16.12 Register description

UnCTRL1 (USART Control 1 Register) CBH/F1H

7	6	5	4	3	2	1	0
UMSEL1	UMSEL0	UPM1	UPM0	USIZE2	USIZE1 UDORD	USIZE0 UCPHA	UCPOL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

UMSEL[1:0]	Selects operation mode of USART						
	UMSEL1	UMSEL0	Operating	Operating Mode			
	0	0		Asynchronous Mode (Normal UART)			
	0	1	-	Synchronous Mode (Synchronous U			
	1	0	Reserved		,		
	1	1	SPI Mode				
UPM[1:0]	Selects Par	ity Generation	and Check m	ethods			
	UPM1	UPM0	Parity mod				
	0	0	No Parity				
	0	1	Reserved				
	1	0	Even Parit	tv			
	1	1	Odd Parity	•			
USIZE[2:0]	-	-	-		operation, selects the		
00:==[=:0]		ita bits in frame			, co.		
	USIZE2	USIZE1	USIZE0	Data le	ength		
	0	0	0	5-bit			
	0	0	1	6-bit			
	0	1	0	7-bit			
	0	1	1	8-bit			
	1	0	0	Reserv	ved .		
	1	0	1	Reserv	ved .		
	1	1	0	Reserv	ved .		
	1	1	1	9-bit			
UDORD	to one the N		a byte is trans	mitted firs	n SPI mode, when set st. When set to zero		
		First					
	1 MSE	B First					
UCPOL	Selects pola	arity of XCK in	svnchronous	or SPI mo	ode		
	-	-	-		@Falling Edge		
		-		_			
UCPHA	This bit is in with UCPO synchronou and trailing pulse. And	1 TXD change @ Falling Edge, RXD change @ Rising Edge This bit is in the same bit position with USIZEO. In SPI mode, along with UCPOL bit, selects one of two clock formats for different kinds of synchronous serial peripherals. Leading edge means first XCK edge and trailing edge means 2 nd or last clock edge of XCK in one XCK pulse. And Sample means detecting of incoming receive bit, Setup means preparing transmit data.					
	UCPOL	UCPHA	Leading E	dge	Trailing Edge		
	0	0	Sample (F	_	Setup (Falling)		
	0	1	Setup (Ris		Sample (Falling)		
	1	0	Sample (F	Ο,	Setup (Rising)		
	1	1	Setup (Fa		Sample (Rising)		

UnCTRL2 (USART Control 2 Register) CCH/F2H

7	6	5	4	3	2	1	0
UDRIE	TXCIE	RXCIE	WAKEIE	TXE	RXE	USARTEN	U2X
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

UDRIE	Interrup	ot enable bit for USART Data Register Empty.
	0	Interrupt from UDRE is inhibited (use polling)
	1	When UDRE is set, request an interrupt
TXCIE	Interrup	ot enable bit for Transmit Complete.
	0	Interrupt from TXC is inhibited (use polling)
	1	When TXC is set, request an interrupt
RXCIE	Interrup	ot enable bit for Receive Complete
	0	Interrupt from RXC is inhibited (use polling)
	1	When RXC is set, request an interrupt
WAKEIE	device	ot enable bit for Asynchronous Wake in STOP mode. When is in stop mode, if RXD2 goes to LOW level an interrupt can uested to wake-up system.
	0	Interrupt from Wake is inhibited
	1	When WAKE is set, request an interrupt
		NOTE) WAKEIE must set after USARTEN setting '1'.
TXE	Enable	s the transmitter unit.
	0	Transmitter is disabled
	1	Transmitter is enabled
RXE	Enable	s the receiver unit.
	0	Receiver is disabled
	1	Receiver is enabled
USARTEN	Activate	e USART module by supplying clock.
	0	USART is disabled (clock is halted)
	1	USART is enabled
U2X		only has effect for the asynchronous operation and selects ar sampling rate.
	0	Normal asynchronous operation
	1	Double Speed asynchronous operation

UnCTRL3 (USART Control 3 Register) CDH/F3H

7	6	5	4	3	2	1	0
MASTER	LOOPS	DISXCK	SPISS	-	USBS	TX8	RX8
R/W	R/W	R/W	R/W	-	R/W	R/W	R

MASTER		s master or slave in SPI or Synchronous mode operation and s the direction of XCK pin.
	0	Slave mode operation and XCK is input pin.
	1	Master mode operation and XCK is output pin
LOOPS	Control	s the Loop Back mode of USART, for test mode
	0	Normal operation
	1	Loop Back mode
DISXCK	In Syndout.	chronous mode of operation, selects the waveform of XCK
	0	XCK is free-running while USART is enabled in synchronous master mode.
	1	XCK is active while any frame is on transferring.
SPISS	Control	s the functionality of SS pin in master SPI mode.
	0	SS pin is normal GPIO or other primary function
	1	SS output to other slave device
USBS		the length of stop bit in Asynchronous or Synchronous of operation.
	0	1 Stop bit
	1	2 Stop bit
TX8		on the bit of data frame in Asynchronous or Synchronous mode ation. Write this bit first before loading the UDATA register.
	0	MSB (9th bit) to be transmitted is '0'
	1	MSB (9th bit) to be transmitted is '1'
RX8		on the bit of data frame in Asynchronous or Synchronous mode ation. Read this bit first before reading the receive buffer.
	0	MSB (9th bit) received is '0'
	1	MSB (9th bit) received is '1'

UnCTRL4 (USART Control 4 Register) 1018H/1019H

7	6	5	4	3	2	1	0
-	-	-	RTOEN	RTO_FLAG	FPCREN	AOVSEN	AOVSSEL
-	-	-	R/W	R/W	R/W	R/W	R/W

	Illidai value. 00H
RTOEN	Enable receiver time out.
	0 Disable
	1 Enable
RTO_FLAG	This bit is set when RTO count overflows. This flag can generate an RTO interrupt. Writing '0' to this bit position will clear RTO_FLAG.
	0 RTO count dose not overflow.
	1 RTO count overflow.
FPCREN	Enable baud rate compensation
	0 Disable
	1 Enable
AOVSEN	Enable additional oversampling rates selection
	0 Disable
	1 Enable
AOVSSEL	Select additional oversampling rates
	0 Select X13
	1 Select X4

UnSTAT (USART Status Register) CFH/F7H

7	6	5	4	3	2	1	0
UDRE	TXC	RXC	WAKE	SOFTRST	DOR	FE	PE
R/W	R/W	R/W	R/W	R/W	R	R	R

Initial value: 80H

UDRE The UDRE flag indicates if the transmit buffer (UDATA) is ready to be

loaded with new data. If UDRE is '1', it means the transmit buffer is empty and can hold one or two new data. This flag can generate an UDRE interrupt. Writing '0' to this bit position will clear UDRE flag.

O Transmit buffer is not empty.

1 Transmit buffer is empty.

TXC This flag is set when the entire frame in the transmit shift register has

been shifted out and there is no new data currently present in the transmit buffer. This flag is automatically cleared when the interrupt service routine of a TXC interrupt is executed. It is also cleared by writing '0' to this bit position. This flag can generate a TXC interrupt.

0 Transmission is ongoing.

1 Transmit buffer is empty and the data in transmit shift register

are shifted out completely.

RXC This flag is set when there are unread data in the receive buffer and

cleared when all the data in the receive buffer are read. The RXC flag

can be used to generate a RXC interrupt.

There is no data unread in the receive buffer

1 There are more than 1 data in the receive buffer

WAKE This flag is set when the RX pin is detected low while the CPU is in

stop mode. This flag can be used to generate a WAKE interrupt. This

bit is set only when in asynchronous mode of operation. $\ensuremath{^{\text{NOTE}}}$

0 No WAKE interrupt is generated.

1 WAKE interrupt is generated.

SOFTRST This is an internal reset and only has effect on USART. Writing '1' to

this bit initializes the internal logic of USART and is auto cleared.

0 No operation

1 Reset USART

DOR This bit is set if a Data OverRun occurs. While this bit is set, the

incoming data frame is ignored. This flag is valid until the receive buffer

is read.

0 No Data OverRun

1 Data OverRun detected

FE This bit is set if the first stop bit of next character in the receive buffer is

detected as '0'. This bit is valid until the receive buffer is read.

0 No Frame Error

1 Frame Error detected

PE This bit is set if the next character in the receive buffer has a Parity

Error when received while Parity Checking is enabled. This bit is valid

until the receive buffer is read.

0 No Parity Error

1 Parity Error detected

NOTE:

 When the WAKE function of USART is used as a release source from STOP mode, it is required to clear this bit in the RX interrupt service routine. Else the device will not wake-up from STOP mode again by the change of RX pin.

UnBAUD (USART Baud-Rate Generation Register) FCH/F5H

	7	6	5	4	3	2	1	0
	UBAUD7	UBAUD6	UBAUD5	UBAUD4	UBAUD3	UBAUD2	UBAUD1	UBAUD0
Ī	R/W							

Initial value: FFH

UBAUD [7:0]

The value in this register is used to generate internal baud rate in asynchronous mode or to generate XCK clock in synchronous or SPI mode. To prevent malfunction, do not write '0' in asynchronous mode, and do not write '0' or '1' in synchronous or SPI mode.

UnDATA (USART Data Register) FDH/F6H

7	6	5	4	3	2	1	0
UDATA7	UDATA6	UDATA 5	UDATA 4	UDATA 3	UDATA 2	UDATA 1	UDATA 0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Initial value: 00_H

UDATA [7:0]

The USART Transmit Buffer and Receive Buffer share the same I/O address with this DATA register. The Transmit Data Buffer is the destination for data written to the UDATA register. Reading the UDATA register returns the contents of the Receive Buffer. Write this register only when the UDRE flag is set. In SPI or synchronous master mode, write this register even if TX is not enabled to generate clock, XCK.

FPCRn (USART Floating Point Register) 101AH/101DH

7	6	5	4	3	2	1	0
FPCR7	FPCR6	FPCR5	FPCR4	FPCR3	FPCR2	FPCR1	FPCR0
R/W							

Initial value: 00H

FPCR [7:0] USART Floating Point Counter 8-bit floating point counter

NOTE:

1. BAUD RATE compensation can be used in the following ways:

Example1

- Condition: sysclk = 16 MHz, Baud rate = 9600 bps, Asynchronous Normal Mode (U2X = 0)
- Baud rate = sysclk / 16 x (UBAUD + 1)
- Calculated UBAUD = (1000000 / Target Baud rate) 1 = 103.17, Error rate = $0.17 \Rightarrow UBAUD = 104$
- UCTRL4 = 0x04, Enable baud rate Compensation
- Calculated FPCR = (UBAUD Calculated UBAUD) x 256 = (104 − 103.17) x 256 = 212.48 ⇒ FPCR = 213

Example2

- Condition: sysclk = 16 MHz, Baud rate = 115,200 bps, Asynchronous Normal Mode (U2X = 0)
- Baud rate = sysclk / 16 x (UBAUD + 1)
- Calculated UBAUD = (1000000 / Target Baud rate) 1 = 7.68, Error rate = 0.68 ⇒ UBAUD = 8
- UCTRL4 = 0x04, Enable baud rate Compensation
- Calculated FPCR = (UBAUD Calculated UBAUD) x 256 = (8 − 7.68) x 256 = 81.92 ⇒ FPCR = 82

RTOCHn (Receiver Time-out Counter High Register) 101BH/101EH

7	6	5	4	3	2	1	0
RTOCH7	RTOCH6	RTOCH5	RTOCH4	RTOCH3	RTOCH2	RTOCH1	RTOCH0
R/W							

Initial value: 00H

RTOCLn (Receiver Time-out Counter Low Register) 101CH/101FH

7	6	5	4	3	2	1	0
RTOCL7	RTOCL6	RTOCL5	RTOCL4	RTOCL3	RTOCL2	RTOCL1	RTOCL0
R/W							

Initial value: 00н

16.13 Baud rate settings (example)

Table 29. Examples of UBAUD Settings for Commonly Used Oscillator Frequencies

	iable 29	. Exam	oles of t	DRAOD	Setting	s for Co	Settings for Commonly Used							
		fOSC=1	.00 MHz			fOSC=1.8	8432 MHz			fOSC=2	.00 MHz			
Baud rate	U2	X=0	U2	X=1	U2	X=0	U2	X=1	U2	X=0	U22	X=1		
rato	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR		
2400	25	0.2%	51	0.2%	47	0.0%	95	0.0%	51	0.2%	103	0.2%		
4800	12	0.2%	25	0.2%	23	0.0%	47	0.0%	25	0.2%	51	0.2%		
9600	6	-7.0%	12	0.2%	11	0.0%	23	0.0%	12	0.2%	25	0.2%		
14.4K	3	8.5%	8	-3.5%	7	0.0%	15	0.0%	8	-3.5%	16	2.1%		
19.2K	2	8.5%	6	-7.0%	5	0.0%	11	0.0%	6	-7.0%	12	0.2%		
28.8K	1	8.5%	3	8.5%	3	0.0%	7	0.0%	3	8.5%	8	-3.5%		
38.4K	1	-18.6%	2	8.5%	2	0.0%	5	0.0%	2	8.5%	6	-7.0%		
57.6K	-	-	1	8.5%	1	-25.0%	3	0.0%	1	8.5%	3	8.5%		
76.8K	-	-	1	-18.6%	1	0.0%	2	0.0%	1	-18.6%	2	8.5%		
115.2K	-	-	-	-	-	-	1	0.0%	-	-	1	8.5%		
230.4K	-	-	-	-	-	-	-	-	-	-	-	-		
		fOSC=3.6	6864 MHz			fOSC=4	.00 MHz			fOSC=7.3	3728 MHz			
Baud rate	U2	X=0	U2	X=1	U2	X=0	U2	X=1	U2	X=0	U2	X=1		
Tale	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR		
2400	95	0.0%	191	0.0%	103	0.2%	207	0.2%	191	0.0%	-	-		
4800	47	0.0%	95	0.0%	51	0.2%	103	0.2%	95	0.0%	191	0.0%		
9600	23	0.0%	47	0.0%	25	0.2%	51	0.2%	47	0.0%	95	0.0%		
14.4K	15	0.0%	31	0.0%	16	2.1%	34	-0.8%	31	0.0%	63	0.0%		
19.2K	11	0.0%	23	0.0%	12	0.2%	25	0.2%	23	0.0%	47	0.0%		
28.8K	7	0.0%	15	0.0%	8	-3.5%	16	2.1%	15	0.0%	31	0.0%		
38.4K	5	0.0%	11	0.0%	6	-7.0%	12	0.2%	11	0.0%	23	0.0%		
57.6K	3	0.0%	7	0.0%	3	8.5%	8	-3.5%	7	0.0%	15	0.0%		
76.8K	2	0.0%	5	0.0%	2	8.5%	6	-7.0%	5	0.0%	11	0.0%		
115.2K	1	0.0%	3	0.0%	1	8.5%	3	8.5%	3	0.0%	7	0.0%		
230.4K	-	-	1	0.0%	-	-	1	8.5%	1	0.0%	3	0.0%		
250K	-	-	1	-7.8%	-	-	1	0.0%	1	-7.8%	3	-7.8%		
0.5M	-	-	-	-	-	-	-	-	-	-	1	-7.8%		
		fOSC=8	.00 MHz			fOSC=11.	0592 MHz			fOSC=14.	7456 MHz			
Baud rate	U2	X=0	U2	X=1	U2	X=0	U2	X=1	U2	X=0	U2	X=1		
	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR		
2400	207	0.2%	-	-	-	-	-	-	-	-	-	-		
4800	103	0.2%	207	0.2%	143	0.0%	-	-	191	0.0%	-	-		
9600	51	0.2%	103	0.2%	71	0.0%	143	0.0%	95	0.0%	191	0.0%		
14.4K	34	-0.8%	68	0.6%	47	0.0%	95	0.0%	63	0.0%	127	0.0%		
19.2K	25	0.2%	51	0.2%	35	0.0%	71	0.0%	47	0.0%	95	0.0%		
28.8K	16	2.1%	34	-0.8%	23	0.0%	47	0.0%	31	0.0%	63	0.0%		
38.4K	12	0.2%	25	0.2%	17	0.0%	35	0.0%	23	0.0%	47	0.0%		
57.6K	8	-3.5%	16	2.1%	11	0.0%	23	0.0%	15	0.0%	31	0.0%		
76.8K	6	-7.0%	12	0.2%	8	0.0%	17	0.0%	11	0.0%	23	0.0%		
115.2K	3	8.5%	8	-3.5%	5	0.0%	11	0.0%	7	0.0%	15	0.0%		
230.4K	1	8.5%	3	8.5%	2	0.0%	5	0.0%	3	0.0%	7	0.0%		
250K	1	0.0%	3	0.0%	2	-7.8%	5	-7.8%	3	-7.8%	6	5.3%		
0.5M	-	-	1	0.0%	-	-	2	-7.8%	1	-7.8%	3	-7.8%		
1M	I -	1 -	1 -	1 -	-	1 -	1 -	1 -	1 -	1 -	1	-7.8%		

16.14 0% error baud rate

USART system of A96G166/A96A166/A96S166 supports floating point counter logic for 0% error of baud rate. By using 8-bit floating point counter logic, cumulative error to below the decimal point can be removed.

Floating point counter value is defined by baud rate error. In the baud rate formula, BAUD is presented in the integer count value. For example, If you want to use the 57600 baud rate (fXIN = 16 MHz), integer count value must be 16.36 value (BAUD+1 = $16000000/(16\times57600) = 17.36$). Here, the accurate BAUD value is 16.36. To achieve the 0% error of baud rate, floating point counter value must be 164 ((17-16.36) x 256 = 164) and BAUD value must be 17. Namely you have to write the 164 (decimal number) in USART_FPCR and 17 (decimal number) in USART_BAUD.

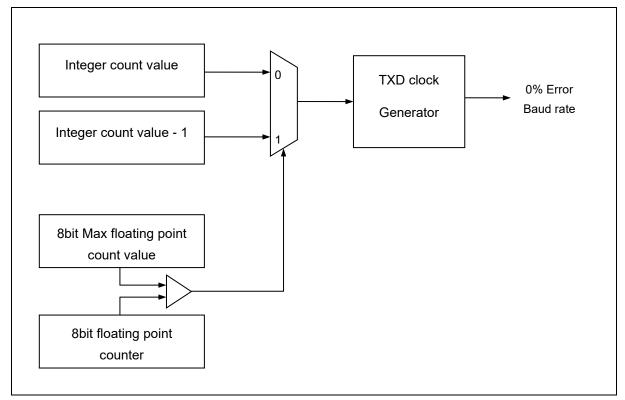


Figure 81. 0% Error Baud Rate Block Diagram

17. CRC

Using the CRC, you can monitor the memory of the specified area. This is a one-time operation, and a reset is required for continuous operation.

In CRC MNT mode, when the CRC read is finished, CRC_FLAG occurs. In CRC validate mode, if the CRC validate fail after the CRC reading is finished, CRC_FLAG occurs. CRC_FAIL indicates the status of validate results when the CRC read is finished. If the CRC_FLAG is generated and the interrupt is enabled, interrupt service routine is served. CRC-FLAG is not cleared by hardware. CRC-TYPE 0~3 are not supported. Validate is done by comparing the CRC_MNT register and the CRC register value. CRC are not automatically initialized, you need to calculate a new CRC after CRC_H, CRC_L Clear.

CRC TYPE	CRC mode	CRC input	Condition of CRC_FLAG	Condition of CRC reset	
CRC_TYPE = 4	MNT	Flash Data	After CRC reading	-	
CRC TYPE = 6	Validate	Flash Data	After CRC reading &	Validate fail	
CRC_ITFE - 0	valluate	Flasii Dala	Validate fail	validate fali	

Table 30. CRC Mode

17.1 Block Diagram

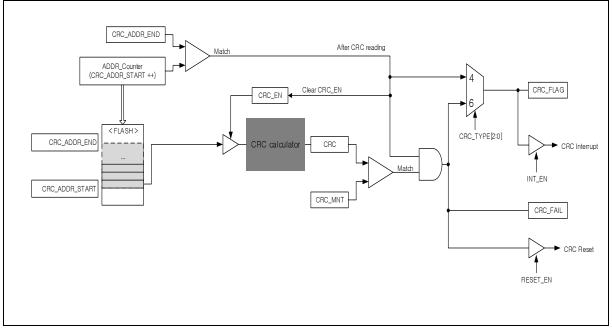


Figure 82. CRC Block Diagram

17.2 Register map

Table 31. CRC Register Map

Name	Address	Direction	Default	Description
CRC_CON	1070H	R/W	00H	CRC Control Register
CRC_H	1072H	R/W	00H	CRC High Register
CRC_L	1073H	R/W	00H	CRC Low Register
CRC_MNT_H	1074H	R/W	00H	CRC Monitor High Register
CRC_MNT_L	1075H	R/W	00H	CRC Monitor Low Register
CRC_ADDR_START_H	1079H	R/W	00H	CRC Start Address High Register
CRC_ADDR_START_M	107AH	R/W	00H	CRC Start Address Middle Register
CRC_ADDR_START_L	107BH	R/W	00H	CRC Start Address Low Register
CRC_ADDR_END_H	107CH	R/W	00H	CRC End Address High Register
CRC_ADDR_END_M	107DH	R/W	00H	CRC End Address Middle Register
CRC_ADDR_END_L	107EH	R/W	00H	CRC End Address Low Register

17.3 Register description

CRC_CON (CRC Control Register): 1070H

7	6	5	4	3	2	1	0
CRC_FLAG	CRC_INTEN	CRC_	CRC_EN	CRC_FAIL	CRC_TYPE2	CRC_TYPE1	CRC_TYPE0
		RESETEN					
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

CRC_FLAG CRC flag. The flag is cleared only by writing a '0' to the bit. So, the flag should be cleared by software. Writing "1" has no effect.

 * When go to interrupt service routine, CRC_FLAG is not cleared.

0 CRC flag not occur

1 CRC flag occur

INT_EN Enable CRC interrupt

CRC interrupt disable CRC interrupt enable

RESET_EN Enable CRC reset

CRC reset disableCRC reset enable

CRC_EN Enable CRC operation,

it is cleared automatically after the CRC monitoring is finished

0 CRC disable1 CRC enable

CRC_FAIL Status of CRC validate.

0 Validate pass

Validate fail

CRC_TYPE Select the CRC input data type.

[2:0] * This value can be changed only when CRC_EN=0.

0xx Not used

100 Specified flash data

110 Specified flash data, validate CRC value

CRC_H (CRC High Register): 1072H

7	6	5	4	3	2	1	0
CRC[15]	CRC[14]	CRC[13]	CRC[12]	CRC[11]	CRC[10]	CRC[9]	CRC[8]
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

CRC_L (CRC Low Register): 1073H

_	7	6	5	4	3	2	1	0
	CRC[7]	CRC[6]	CRC[5]	CRC[4]	CRC[3]	CRC[2]	CRC[1]	CRC[0]
	RW							

Initial value: 00H

CRC[15:0] CRC result

CRC_MNT_H (CRC Monitor High Register): 1074H

7	6	5	4	3	2	1	0
CRC_	CRC_	CRC_	CRC_	CRC_	CRC_	CRC_	CRC_
MNT[15]	MN∏14]	MN∏13]	MNT[12]	MN∏11]	MNT[10]	MNT[9]	MNT[8]
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

CRC_MNT_L (CRC Monitor Low Register): 1075H

7	6	5	4	3	2	1	0
CRC_MNT[7]	CRC_MNT[6]	CRC_MNT[5]	CRC_MNT[4]	CRC_MNT[3]	CRC_MNT[2]	CRC_MNT[1]	CRC_MNT[0]
RW							

Initial value: 00H

CRC_MNT CRC compare register, when performing a validate [15:0]

CRC_ADDR_START_H (CRC Start Address High Register): 1079H

7	6	5	4	3	2	1	0
-	1	-	-	-	-	1	CRC_ADDR_ START[16]
RW							

Initial value: 00H

CRC_ADDR_START_M (CRC Start Address Middle Register): 107AH

7	6	5	4	3	2	1	0
CRC_ADDR_							
START[15]	START[14]	START[13]	START[12]	START[11]	START[10]	START[9]	START[8]
R/W							

Initial value: 00H

CRC_ADDR_START_L (CRC Start Address Low Register): 107BH

7	6	5	4	3	2	1	0
CRC_ADDR_							
START[7]	START[6]	START[5]	START[4]	START[3]	START[2]	START[1]	START[0]
R/W							

Initial value: 00H

CRC_ADDR_ CRC start address START[16:0]

CRC_ADDR_END_H (CRC END Address High Register): 107CH

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	CRC_ADDR_END[16]
RW							

Initial value: 00H

CRC_ADDR_END_M (CRC END Address Middle Register): 107DH

	7	6	5	4	3	2	1	0
	CRC_ADDR_ END[15]	CRC_ADDR_ END[14]	CRC_ADDR_ END[13]	CRC_ADDR_ END[12]	CRC_ADDR_ END[11]	CRC_ADDR_ END[10]	CRC_ADDR_ END[9]	CRC_ADDR_ END[8]
L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Initial value: 00H

CRC_ADDR_END_L (CRC END Address Low Register): 107EH

7	6	5	4	3	2	1	0
CRC_ADDR_ END[7]	CRC_ADDR_ END[6]	CRC_ADDR_ END[5]	CRC_ADDR_ END[4]	CRC_ADDR_ END[3]	CRC_ADDR_ END[2]	CRC_ADDR_ END[1]	CRC_ADDR_ END[0]
R/W							

Initial value: 00H

CRC_ADDR_ CRC end address END[16:0]

17.4 Register Polynomial

CRC16, Polynomial representations Normal: 0x8C81

$$f(x) = 1 + x^7 + x^{10} + x^{11} + x^{15} + x^{16}$$

18. Power down operation

A96G166/A96A166/A96S166 has two power-down modes to minimize the power consumption of the device. In power down mode, power consumption is reduced considerably. A96G166/A96A166/A96S166 provides three kinds of power saving functions such as Main-IDLE mode, Sub-IDLE mode and STOP mode. During one of these three modes, program will be stopped.

18.1 Peripheral operation in IDLE/ STOP mode

Table 32 shows operation status of each peripheral in IDLE mode and STOP mode.

Table 32. Peripheral Operation Status during Power-down Mode

Peripheral	IDLE mode	STOP mode		
CPU	ALL CPU operations are disabled.	ALL CPU operations are disabled.		
RAM	Retains.	Retains.		
Basic Interval Timer	Operates continuously.	Stops (can be operated with WDTRC OSC).		
Watchdog Timer	Operates continuously.	Stops (can be operated with WDTRC OSC).		
Watch Timer	Operates continuously.	Stops (can be operated with sub clock).		
Timer0~2	Operates continuously.	Halts (only when the event counter mode is enabled, timer operates normally).		
ADC	Operates continuously.	Stops.		
BUZ	Operates continuously.	Stops.		
USART 0/1	Operates continuously.	Only operates with external clock.		
I2C	Operates continuously.	Stops.		
Internal OSC (32 MHz)	Oscillates.	Stops when the system clock (fx) is fHSI.		
WDTRC OSC (128 kHz)	Can be operated with setting value.	Can be operated programmable.		
Main OSC (0.4 to 12 MHz)	Oscillates.	Stops when fx = fXIN.		
Sub OSC (32.768 kHz)	Oscillates.	Can be operated programmable.		
I/O Port	Retains.	Retains.		
Control Register	Retains.	Retains.		
Address Data Bus	Retains.	Retains.		
		By RESET		
		Timer Interrupt (EC0, EC1)		
	- Du DECET	External Interrupt		
Release Method	By RESET All Interments	USART 0/1 by RX		
	All Interrupts	WT (sub clock)		
		• WDT		
		I2C(Slave mode)		

18.2 IDLE mode

Power control register is set to '01h' to enter into IDLE mode. In IDLE mode, internal oscillation circuits remain active. Oscillation continues and peripherals are operated normally, but CPU stops.

It is released by reset or an interrupt. To be released by an interrupt, the interrupt should be enabled before IDLE mode. If using a reset, because the device is initialized, registers become to have reset values.

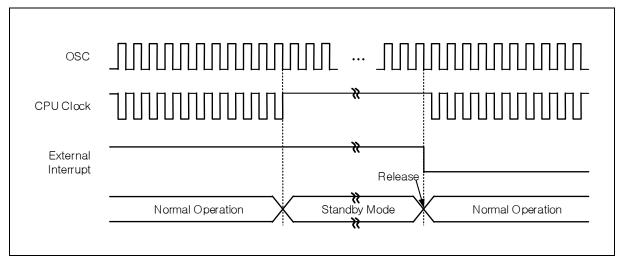


Figure 83. IDLE Mode Release Timing by an External Interrupt

18.3 STOP mode

Power control register is set to '03H' to enter into STOP mode. In STOP mode, the selected oscillator, system clock and peripheral clock is stopped, but watch timer can be continued to operate with sub clock.

With the clock frozen, all functions are stopped, but the on-chip RAM and control registers are held. For example, If the internal RC oscillator (f_{IRC}) is selected for the system clock and the sub clock (f_{SUB}) is oscillated, the internal RC oscillator stops oscillation and the sub clock is continuously oscillated in stop mode. At that time, the watch timer can be operated with the sub clock.

Sources to exit from STOP mode is hardware reset and interrupts. The hardware reset re-defines all control registers. When awaking from STOP mode, enough oscillation stabilization time is required to normal operation. Figure 84 shows the timing diagram.

As shown in the Figure 84, when released from STOP mode, the basic interval timer is activated on wake-up. Therefore, before STOP instruction, a user must set relevant prescale divide ratio to have long enough time. This guarantees that an oscillator has started and stabilized.

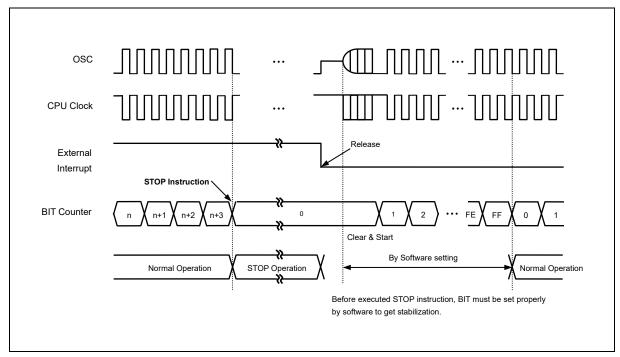


Figure 84. STOP Mode Release Timing by External Interrupt

18.4 Released operation of STOP mode

After STOP mode is released, operation begins according to content of related interrupt register just before STOP mode starts (refer to Figure 85). If the global interrupt Enable Flag (IE.EA)is set to `1`, the STOP mode is released by a certain interrupt of which interrupt enable flag = `1` and the CPU jumps to the relevant interrupt service routine. Even if the IE.EA bit is cleared to '0', the STOP mode is released by the interrupt of which the interrupt enable flag is set to '1'.

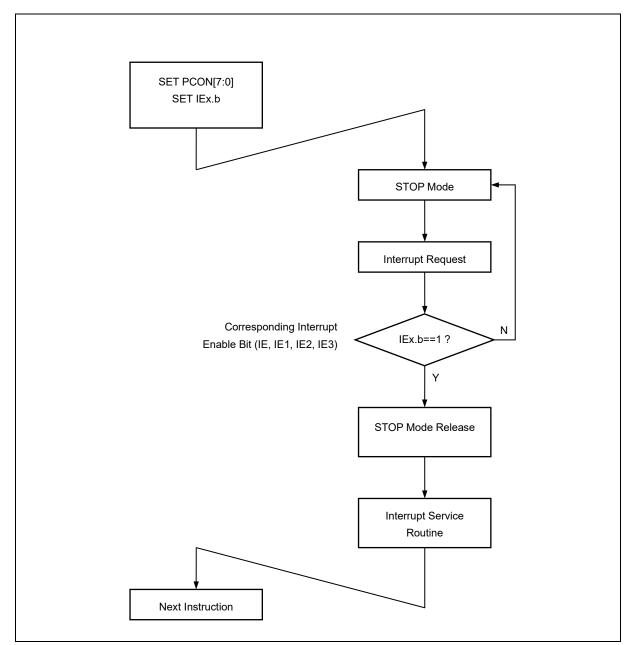


Figure 85. STOP Mode Release Flow

18.5 Register map

Table 33. Power-down Operation Register Map

Name	me Address Direct		Default	Description		
PCON	87H	R/W	00H	Power Control Register		

Register description 18.6

PCON (Power Control Register): 87H

7	6	5	4	3	2	1	0
PCON7	_	_	_	PCON3	PCON2	PCON1	PCON0
R/W	-	_	_	R/W	R/W	R/W	R/W

Initial value: 00H

PCON[7:0] Power Control

> 01H IDLE mode enable 03H STOP mode enable Other Normal operation

Values

NOTES:

- 1. To enter into IDLE mode, PCON must be set to '01H'.
- To enter into STOP mode, PCON must be set to '03H'.

The PCON register is automatically cleared by a release signal in STOP/IDLE mode. Three or more NOP instructions must immediately follow the instruction that make the device enter into STOP/IDLE mode. Refer to the following examples code.

Example	1		Example 2				
MOV NOP NOP NOP	PCON, #01H	; IDLE mode	MOV NOP NOP NOP	PCON, #03H	; STOP mode		
			•				

19. Reset

Table 34 shows hardware setting values of main peripherals.

Table 34. Hardware Setting Values in Reset State

On Chip Hardware	Initial Value		
Program Counter (PC)	0000h		
Accumulator	00h		
Stack Pointer (SP)	07h		
Peripheral Clock	On		
Control Register	Refer to the Peripheral Registers		

A96G166/A96A166/A96S166 has five types of reset sources as shown in the followings:

- External RESETB
- Power ON RESET (POR)
- WDT Overflow Reset (In the case of WDTEN = `1`)
- Low Voltage Reset (In the case of LVREN = `0 `)
- OCD Reset

19.1 Reset block diagram

In this section, reset unit is described in a block diagram.

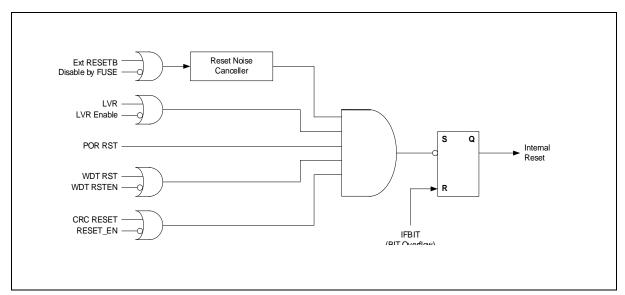


Figure 86. Reset Block Diagram

19.2 Power on reset

When rising device power, POR (Power on Reset) has a function to reset a device. If POR is used, it executes the device RESET function instead of the RESET IC or the RESET circuits.

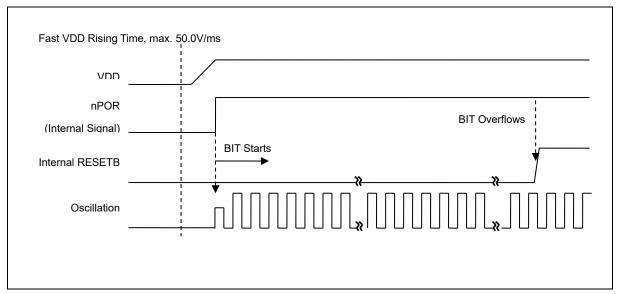


Figure 87. Fast VDD Rising Time

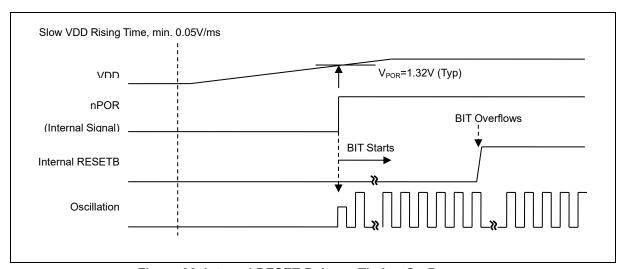


Figure 88. Internal RESET Release Timing On Power-up

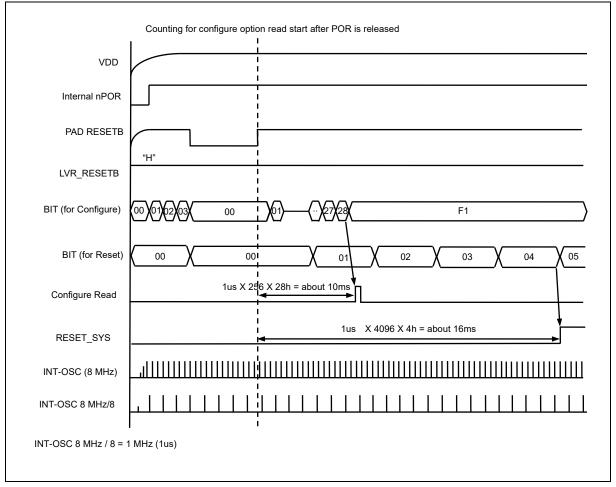


Figure 89. Configuration Timing when Power-on

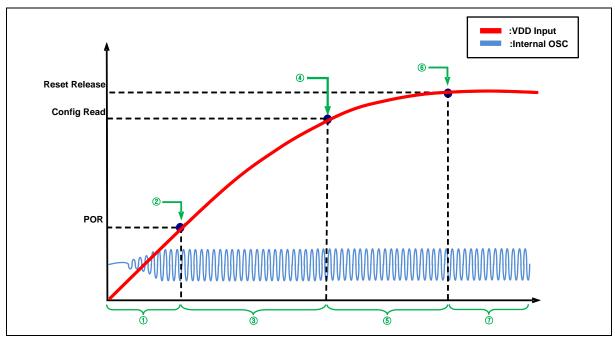


Figure 90. Boot Process Waveform

Table 35. Boot Process Description

	Tuble 66. Boot 1 100035 Beschiption							
Process	Description	Remarks						
1)	No Operation	0.7V to 0.9V						
0	• LSI (128 kHz) ON	0.7 V 10 0.9 V						
2	1st POR level Detection	About 1.1V to 1.3V						
	• (LSI 128 kHz/32)x32h Delay section (=10ms)							
3	VDD input voltage must rise over than flash operating voltage for Configure option read	Slew Rate >= 0.025V/ms						
		About 1.6V to 1.8V						
4	Configure option read point	Configure Value is determined by Writing Option						
(5)	Rising section to Reset Release Level	16ms point after POR or Ext_reset release						
	Reset Release section (BIT overflow)							
6	After 16ms, after External Reset Release (External reset)	BIT is used for Peripheral stability						
	 16ms point after POR (POR only) 							
7	Normal operation							

19.3 External resetb input

External resetb is input to a Schmitt trigger. If the resetb pin is held with low for at least 50us over within the operating voltage range and stable oscillation, it is applied and the internal state is initialized. After reset state becomes '1', it needs stabilization time with 16ms and after the stable state, the internal reset becomes '1'. The reset process step needs 5 oscillator clocks. And the program execution starts at the vector address stored at address 0000H.

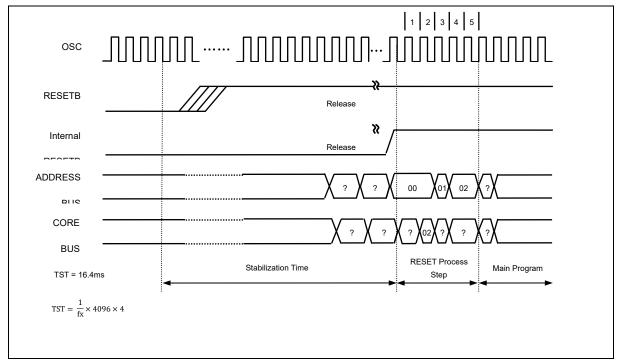


Figure 91. Timing Diagram after A RESET

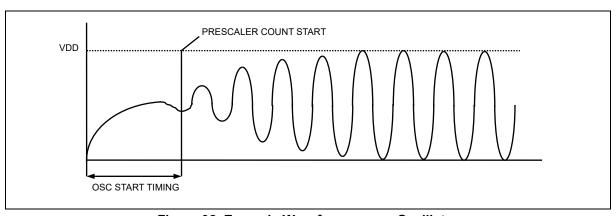


Figure 92. Example Waveforms on an Oscillator

As shown in Figure 92, the stable generating time is not included in the start-up time. The RESETB pin has a pull-up register by hardware

19.4 Low voltage reset process

A96G166/A96A166/A96S166 has an On-chip brown-out detection circuit (LVR) for monitoring VDD level during operation by comparing it to a fixed trigger level. Trigger level for the LVR can be selected by configuring LVRVS[3:0] bits to be 1.61V, 1.68V, 1.77V, 1.88V, 2.00V, 2.13V, 2.28V, 2.46V, 2.68V, 2.81V, 3.06V, 3.21V, 3.56V, 3.73V, 3.91V, 4.25V.

In the STOP mode, this will contribute significantly to the total current consumption. So to minimize the current consumption, LVREN bit is set to off by software.

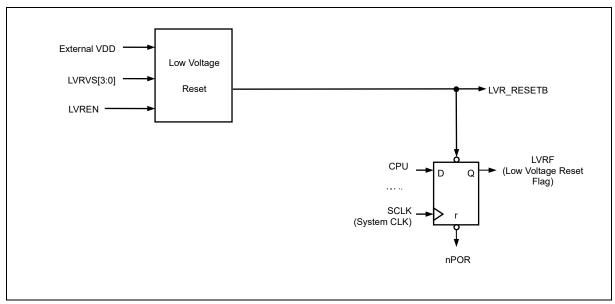


Figure 93. Block Diagram of LVR

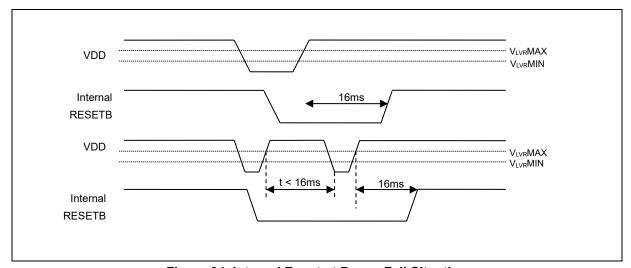


Figure 94. Internal Reset at Power Fail Situation

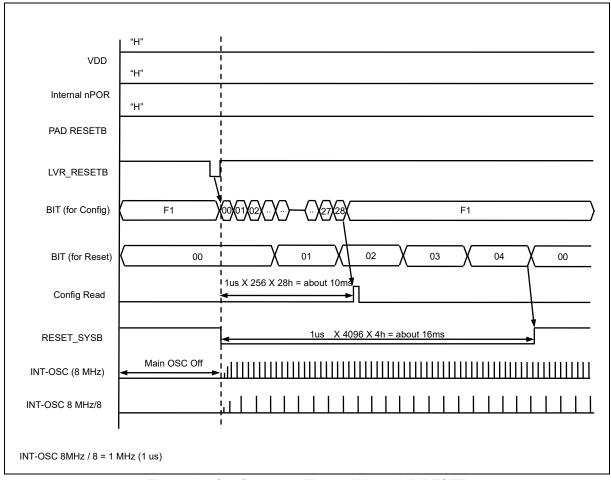


Figure 95. Configuration Timing When LVR RESET

19.5 LVI block diagram

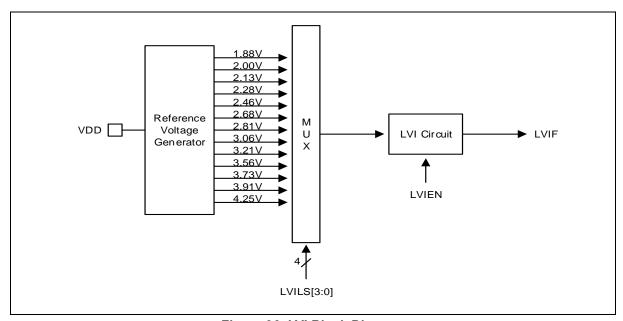


Figure 96. LVI Block Diagram

19.6 Register Map

Table 36. Reset Operation Register Map

Name	Address	S Direction Default Description		Description
RSTFR	E8H	R/W	80H	Reset Flag Register
LVRCR	D8H	R/W	00H	Low Voltage Reset Control Register
LVICR	86H	R/W	00H	Low Voltage Indicator Control Register

19.7 Reset operation register description

RSTFR (Reset Flag Register): E8H

7	6	5	4	3	2	1	0
PORF	EXTRF	WDTRF	OCDRF	LVRF	CRCF	_	_
RW	RW	RW	RW	RW	RW	-	_

Initial value: 80H

PORF	Power-On Reset flag bit. The bit is reset by writing '0' to this bit.				
. •	0 No detection				
	1 Detection				
EXTRF	External Reset (RESETB) flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.				
	0 No detection				
	1 Detection				
WDTRF	Watchdog Reset flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.				
	0 No detection				
	1 Detection				
OCDRF	On-chip debugger reset flag bit. The bit reset by writing '0' to this bit or by Power-On Reset				
	0 No detection				
	1 Detection				
LVRF	Low Voltage Reset flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.				
	0 No detection				
	1 Detection				
CRCF	CRC Reset flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.				
	0 No detection				
	1 Detection				

NOTES:

- 1. When the Power-On Reset occurs, the PORF bit is only set to "1", the other flag (WDTRF) bits are all cleared to "0".
- 2. When the Power-On Reset occurs, the EXTRF bit is unknown, at that time, the EXTRF bit can be set to "1" when External Reset (RESETB) occurs.
- When the Power-On Reset occurs, the LVRF bit is unknown, at that time, the LVRF bit can be set to "1" when LVR
 Reset occurs
- 4. When a reset except the POR occurs, the corresponding flag bit is only set to "1", the other flag bits are kept in the previous values.

LVRCR (Low Voltage Reset Control Register): D8H

7	6	5	4	3	2	1	0
_	_	_	LVRVS3	LVRVS2	LVRVS1	LVRVS0	LVREN
_	_	_	RW	RW	RW	RW	RW

Initial value: 00H

LVRVS[3:0]	LVR Voltag	je Select			
	LVRVS3	LVRVS2	LVRVS1	LVRVS0	Description
	0	0	0	0	1.61V
	0	0	0	1	1.68V
	0	0	1	0	1.77V
	0	0	1	1	1.88V
	0	1	0	0	2.00V
	0	1	0	1	2.13V
	0	1	1	0	2.28V
	0	1	1	1	2.46V
	1	0	0	0	2.68V
	1	0	0	1	2.81V
	1	0	1	0	3.06V
	1	0	1	1	3.21V
	1	1	0	0	3.56V
	1	1	0	1	3.73V
	1	1	1	0	3.91V
	1	1	1	1	4.25V
LVREN	LVR Opera	ition			
	0	LVR Enable	@STOP MO	DE	
	1	LVR Disable	@STOP MO	DE	

NOTES:

- 1. The LVRVS[3:0] bits are cleared by a power-on reset but are retained by other reset signals.
- 2. The LVRVS[3:0] bits should be set to '0000b' while LVREN bit is "1".
- 3. LVR is always enabled when the MCU is in Run mode.

LVICR (Low Voltage Indicator Control Register): 86H

7	6	5	4	3	2	1	0
_	_	LVIF	LVIEN	LVILS3	LVILS2	LVILS1	LVILS0
_	_	RW	RW	RW	RW	RW	RW

Initial value: 00H

LVIF	Low Volta	age Indicato	or Flag Bit		
	0	No detection	on		
	1	Detection			
LVIEN	LVI Enab	le/Disable			
	0	Disable			
	1	Enable			
LVIVS[3:0]	LVI Level	Select			
	LVIVS3	LVIVS2	LVIVS1	LVIVS0	Description
	0	0	0	0	Not available
	0	0	0	1	Not available
	0	0	1	0	Not available
	0	0	1	1	1.88V
	0	1	0	0	2.00V
	0	1	0	1	2.13V
	0	1	1	0	2.28V
	0	1	1	1	2.46V
	1	0	0	0	2.68V
	1	0	0	1	2.81V
	1	0	1	0	3.06V
	1	0	1	1	3.21V
	1	1	0	0	3.55V
	1	1	0	1	3.73V
	1	1	1	0	3.91V
	1	1	1	1	4.25V

20. Memory programming

A96G166/A96A166/A96S166 has flash memory to which a program can be written, erased, and overwritten while mounted on the board. Serial ISP mode is supported.

Flash of A96G166/A96A166/A96S166 features the followings:

- Flash Size : 16Kbytes
- Single power supply program and erase
- · Command interface for fast program and erase operation
- Up to 30,000 program/erase cycles at typical voltage and temperature for flash memory
- Security feature

20.1 Flash control and status registers

Registers controlling Flash and Data EEPROM are Mode Register (FEMR), Control Register (FECR), Status Register (FESR), Time Control Register (FETCR), Address Low Register x (FEARLx), Address Middle Register x (FEARMx), address High Register (FEARH). They are mapped to SFR area and can be accessed only in programming mode.

20.1.1 Register map

Table 37. Flash Control and Status Register Map

Name	Address	Dir	Default	Description
FEMR	1020H	R/W	00H	Flash Mode Register
FECR	1021H	R/W	03H	Flash Control Register
FESR	1022H	R/W	80H	Flash Status Register
FETCR	1023H	R/W	00H	Flash Time Control Register
FEARL1	1025H	R/W	00H	Flash Address Low Register 1
FEARM1	1024H	R/W	00H	Flash Address Middle Register 1
FEARL	102AH	R/W	00H	Flash Address Low Register
FEARM	1029H	R/W	00H	Flash Address Middle Register
FEARH	FEARH 1028H R/W 00H Flash Address High Register		Flash Address High Register	

20.1.2 Register description

FEMR (Flash Mode Register): 1020H

7	6	5	4	3	2	1	0
FSEL	-	PGM	ERASE	PBUFF	OTPE	VFY	FEEN
RW	-	RW	RW	RW	RW	RW	RW

Initial value: 00H

FSEL	Salact	flash memory.			
I OLL	0	Deselect flash memory			
	1				
DOM	•	Select flash memory			
PGM		program or program verify mode with VFY			
	0	Disable program or program verify mode			
	1	Enable program or program verify mode			
ERASE	Enable	erase or erase verify mode with VFY			
	0	Disable erase or erase verify mode			
	1	Enable erase or erase verify mode			
PBUFF	Select	page buffer			
	0	Deselect page buffer			
	1	Select page buffer			
OTPE	Select	OTP area instead of program memory			
	0	Deselect OTP area			
	1	Select OTP area			
VFY	Set pro	gram or erase verify mode with PGM or ERASE			
	Prograi	m Verify: PGM=1, VFY=1			
	Erase \	Verify: ERASE=1, VFY=1			
FEEN	Enable program and erase of Flash. When inactive, it is possible to read as normal mode				
	0	Disable program and erase			
	1	Enable program and erase			

FECR (Flash Control Register): 1021H

7	6	5	4	3	2	1	0
AEF	-	EXIT1	EXIT0	WRITE	READ	nFERST	nPBRST
RW	-	RW	RW	RW	RW	RW	RW

Initial value: 03H

AEF	Enable fla	e flash bulk erase mode						
	0	Disable b	ulk erase mode of Flash memory					
	1	Enable bu	ulk erase mode of Flash memory					
EXIT[1:0]	Exit from	program mo	ode. It is cleared automatically after 1 clock					
	EXIT1	EXIT0	Description					
	0	0	Don't exit from program mode					
	0	1	Don't exit from program mode					
	1	0	Don't exit from program mode					
	1	1	Exit from program mode					
WRITE	Start to p clock	ogram or erase of Flash. It is cleared automatically after 1						
	0	No operation						
	1	Start to pr	rogram or erase of Flash					
READ	Start auto	o-verify of Fl	ash. It is cleared automatically after 1 clock					
	0	No operat	tion					
	1	Start to pr	rogram or erase of Flash					
nFERST	Reset Fla	ash control l	ogic. It is set automatically after 1 clock					
	0	Reset Fla	sh control logic					
	1	No operat	tion (default)					
nPBRST	Reset pa	ge buffer wi	th PBUFF. It is set automatically after 1 clock					
	PBUFF	nPBRST	Description					
	0	0 Page buffer reset						
	1	0	Page buffer select register reset					
	Χ	1	No operation (default)					

NOTE:

 WRITE and READ bits can be used in program, erase and verify mode with FEAR registers. Read or writes for memory cell or page buffer uses read and write enable signals from memory controller. Indirect address mode with FEAR is only allowed to program, erase and verify

FESR (Flash Status Register): 1022H

	7	6	5	4	3	2	1	0
	PEVBSY	REMAPSI	REMAP-	-	ROMINT	WMODE	EMODE	VMODE
Ī	R	R/W	R/W	-	R/W	R	R	R

Initial value: 80H

PEVBSY Operation status flag. It is cleared automatically when operation starts.

Operations are program, erase or verification

0 Busy (Operation processing)

1 Complete Operation

REMAPSI Remapping for check the serial ID.

0 No operation

1 Remapping OTP area to FFC0~FFFF.

REMAP Test Only.

ROMINT Flash interrupt request flag. Auto-cleared when program/erase/verify

starts. Active in program/erase/verify completion

No interrupt request.

1 Interrupt request.

WMODE Write mode flag
EMODE Erase mode flag
VMODE Verify mode flag

FEARL1 (Flash address low Register 1): 1025H

7	6	5	4	3	2	1	0
ARL17	ARL16	ARL15	ARL14	ARL13	ARL12	ARL11	ARL10
W	W	W	W	W	W	W	W

Initial value: 00H

ARL1[7:0] Flash address low 1

FEARM1 (Flash address middle Register 1): 1024H

7	6	5	4	3	2	1	0
ARM17	ARM16	ARM15	ARM14	ARM13	ARM12	ARM11	ARM10
W	W	W	W	W	W	W	W

Initial value: 00H

ARM1[7:0] Flash address middle 1

FEARL (Flash address low Register): 102AH

7	6	5	4	3	2	1	0
ARL7	ARL6	ARL5	ARL4	ARL3	ARL2	ARL1	ARL0
W	W	W	W	W	W	W	W

Initial value: 00H

ARL[7:0] Flash address low

FEARM (Flash address middle Register): 1029H

7	6	5	4	3	2	1	0
ARM7	ARM6	ARM5	ARM4	ARM3	ARM2	ARM1	ARM0
W	W	W	W	W	W	W	W

Initial value: 00H

ARM[7:0] Flash address middle

FEARH (Flash address high Register): 1028H

	7	6	5	4	3	2	1	0
	ARH7	ARH6	ARH5	ARH4	ARH3	ARH2	ARH1	ARH0
Ĭ	W	W	W	W	W	W	W	W

Initial value: 00H

ARH[7:0] Flash address high

NOTES:

- 1. FEAR registers are used for program, erase and auto-verify. In program and erase mode, it is page address and ignored the same least significant bits as the number of bits of page address. In auto-verify mode, address increases automatically by one.
- 2. EARs are write-only register. Reading these registers returns 24-bit checksum result.
- 3. When calculating flash checksum, the lower 4 bits of start address are calculated as 0x0000 and the lower 4 bits of end address as 0x1111 for protection.
- 4. This device can support internal Checksum calculation, device verification time will be decreased dramatically.
- 5. Checksum cannot detect error address or error bit, but it is quite good feature in mass product programming.
- 6. Device data read out time takes few seconds. The execution time per byte is 4~5ms based on 16 MHz.

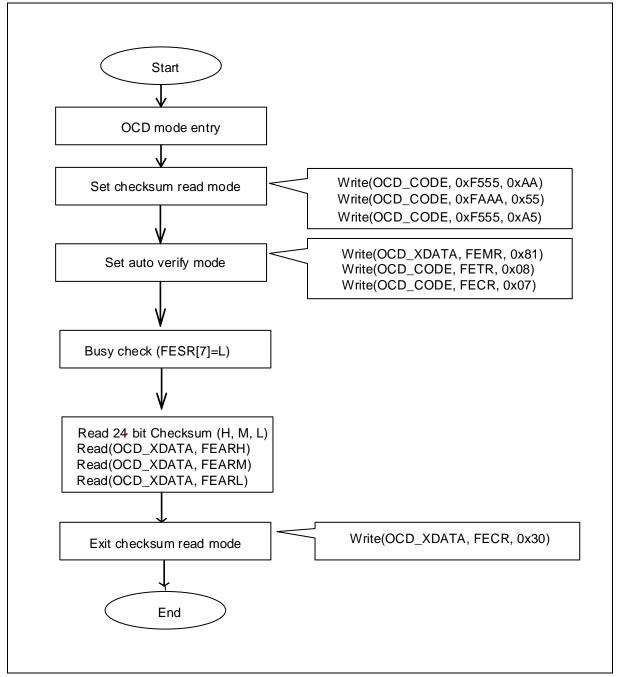


Figure 97. Read Device Internal Checksum (Full Size)

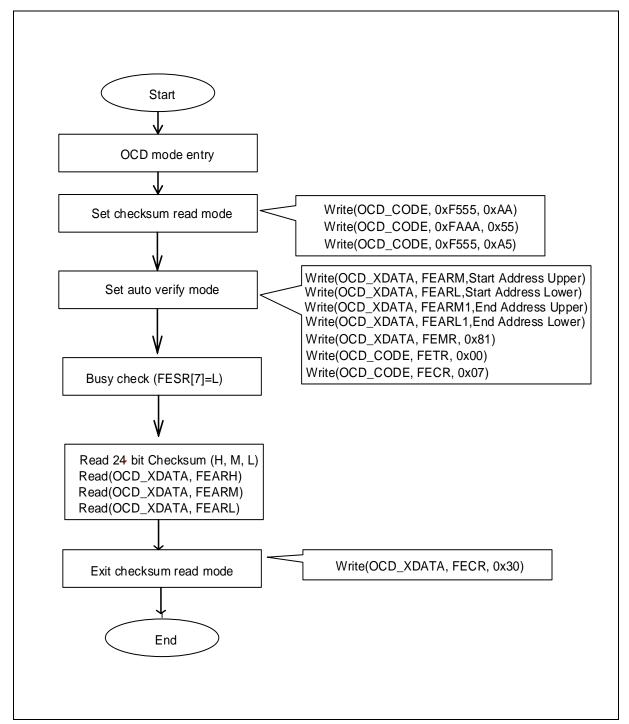


Figure 98. Read Device Internal Checksum (User Define Size)

FETCR (Flash Time control Register): 1023H

7	6	5	4	3	2	1	0
TCR7	TCR6	TCR5	TCR4	TCR3	TCR2	TCR1	TCR0
R/W							

Initial value: 00H

TCR[7:0] Flash Time control

Program and erase time is controlled by setting FETCR register. Program and erase timer uses 10-bit counter. It increases by one at each RING clock frequency (f_{LSI}=128 kHz).

It is cleared when program or erase starts. Timer stops when 10-bit counter is same to FETCR. PEVBSY is cleared when program, erase or verify starts and set when program, erase or verify stops.

Max program/erase time at INTRC/256 clock: (255+1) * 2 * (7.8125us) = 4.0ms

In the case of $\pm 10\%$ of error rate of counter source clock, program or erase time is $3.6 \sim 4.4 \, \text{ms}$.

* Program/erase time calculation

- For page write or erase = Tpe = (TCON+1) * 2 * (fLSI)
- For bulk erase, Tbe = (TCON+1) * 4 * (fLSI)
- Recommended bulk erase time: FETCR = 57h
- Recommended program / page erase time : FETCR = AFh

Table 38. Program and Erase Time

	Min	Тур	Max	Unit
Program/erase time	2.4	2.5	2.6	ms

20.2 Memory map

20.2.1 Flash memory map

Program memory uses 16K bytes of flash memory. It is read by byte and written by byte or page. One page is 32-bytes

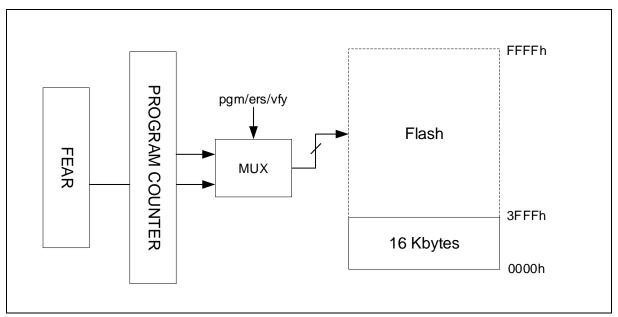


Figure 99. Flash Memory Map

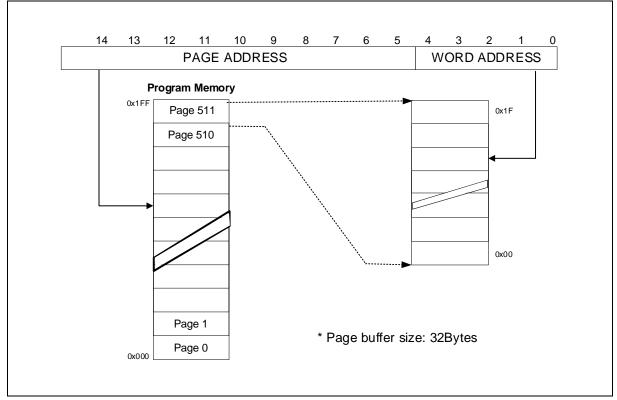


Figure 100. Address Configuration of Flash Memory

20.3 Serial in-system program mode

Serial in-system program uses the interface of debugger which uses two wires. Refer to 21. Development tools in details about debugger.

20.3.1 Flash operation

Configuration (This Configuration is just used to follow description)

7	6	5	4	3	2	1	0
•	FEMR[4] & [1]	FEMR[5] & [1]	•	-	FEMR[2]	FECR[6]	FECR[7]
-	ERASE&VFY	PGM&VFY	-	-	OTPE	AEE	AEF

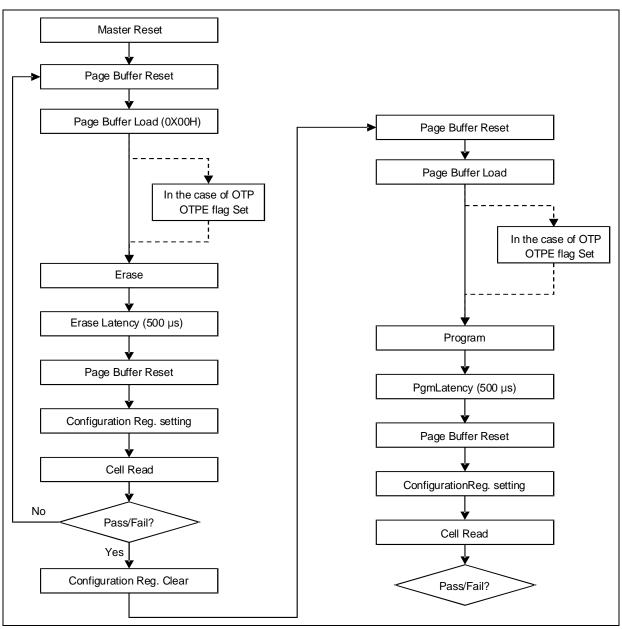


Figure 101. Sequence of Page Program and Erase of Flash Memory

Figure 102. Sequence of Bulk Erase of Flash Memory

Flash read

- 1. Enter OCD (=ISP) mode.
- 2. Set ENBDM bit of BCR.
- 3. Enable debug and Request debug mode.
- 4. Read data from Flash.

Enable program mode

- 1. Enter OCD(=ISP) mode. NOTE1
- 2. Set ENBDM bit of BCR.
- 3. Enable debug and Request debug mode.
- 4. Enter program/erase mode sequence. NOTE2
 - A. Write 0xAA to 0xF555.
 - B. Write 0x55 to 0xFAAA.
 - C. Write 0xA5 to 0xF555.

NOTES:

- 1. Refer to how to enter ISP mode.
- Command sequence to activate Flash write/erase mode. It is composed of sequentially writing data of Flash memory.

Flash write mode

- 1. Enable program mode.
- 2. Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- 3. Select page buffer. FEMR:1000_1001
- 4. Write data to page buffer (Address automatically increases by twin).
- Set write mode. FEMR:1010_0001
- 6. Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- 7. Set FETCR.
- 8. Start program. FECR:0000_1011
- 9. Insert one NOP operation
- 10. Read FESR until PEVBSY is 1.
- 11. Repeat 2 to 8 until all pages are written.

Flash page erase mode

- 1. Enable program mode.
- 2. Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- 3. Select page buffer. FEMR:1000 1001
- 4. Write 'h00 to page buffer. (Data value is not important.)
- 5. Set erase mode. FEMR:1001_0001
- 6. Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- 7. Set FETCR.
- 8. Start erase. FECR:0000_1011
- 9. Insert one NOP operation
- 10. Read FESR until PEVBSY is 1.
- 11. Repeat 2 to 8 until all pages are erased

Flash bulk erase mode

- 1. Enable program mode.
- 2. Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- 3. Select page buffer. FEMR:1000_1001
- 4. Write 'h00 to page buffer. (Data value is not important.)
- 5. Set erase mode. FEMR:1001_0001.

Only main cell area is erased.

For bulk erase including OTP area, select OTP area (set FEMR to 1000_1101).

- 6. Set FETCR
- 7. Start bulk erase. FECR:1000_1011
- 8. Insert one NOP operation
- 9. Read FESR until PEVBSY is 1.

Flash OTP area read mode

- 1. Enter OCD (=ISP) mode.
- 2. Set ENBDM bit of BCR.
- 3. Enable debug and Request debug mode.
- 4. Select OTP area. FEMR:1000 0101
- 5. Read data from Flash.

Flash OTP area write mode

- 1. Enable program mode.
- 2. Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- 3. Select page buffer. FEMR:1000_1001
- 4. Write data to page buffer (Address automatically increases by twin).
- 5. Set write mode and select OTP area. FEMR:1010_0101
- 6. Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- 7. Set FETCR.
- 8. Start program. FECR:0000_1011
- 9. Insert one NOP operation
- 10. Read FESR until PEVBSY is 1.

Flash OTP area erase mode

- 1. Enable program mode.
- 2. Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- 3. Select page buffer. FEMR:1000_1001
- 4. Write 'h00 to page buffer. (Data value is not important.)
- Set erase mode and select OTP area. FEMR:1001_0101
- 6. Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- Set FETCR.
- 8. Start erase. FECR:0000_1011
- 9. Insert one NOP operation
- 10. Read FESR until PEVBSY is 1.

Flash program verify mode

- 1. Enable program mode.
- 2. Set program verify mode. FEMR:1010_0011
- 3. Read data from Flash.

OTP program verify mode

- 1. Enable program mode.
- 2. Set program verify mode. FEMR:1010_0111
- 3. Read data from Flash.

Flash erase verify mode

- 1. Enable program mode.
- 2. Set erase verify mode. FEMR:1001_0011
- 3. Read data from Flash

Flash page buffer read

- 1. Enable program mode.
- 2. Select page buffer. FEMR:1000_1001
- 3. Read data from Flash.

Summary of flash program/erase mode

Table 39. Operation Mode

	Operation mode	Description								
	Flash read	Read cell by byte.								
	Flash write	Write cell by bytes or page.								
	Flash page erase	Erase cell by page.								
Flash	Flash bulk erase	Erase the whole cells.								
	Flash program verify	Read cell in verify mode after programming.								
	Flash erase verify	Read cell in verify mode after erase.								
	Flash page buffer load	Load data to page buffer.								

20.4 Mode entrance method of ISP mode

20.4.1 Mode entrance method for ISP

Table 40. Mode Entrance Method for ISP

TARGET MODE	TARGET MODE DSDA		DSDA		
OCD(ISP)	'hC	'hC	'hC		

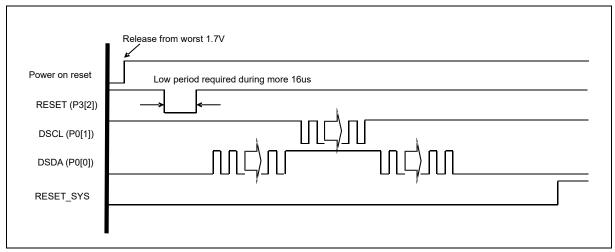


Figure 103. ISP Mode

20.5 Security

A96G166/A96A166/A96S166 provides Lock bits which can be left un-programmed ("0") or can be programmed ("1") to obtain the additional features listed in Table 41. The Lock bit can only be erased to "0" with the bulk erase command and a value of more than 0x40 at FETCR.

Table 41. Security Policy using Lock Bits

LOCK	LOCK USER MODE								ISP MODE							
MODE		FLA	ASH		ОТР			FLASH			ОТР					
R_P	R	W	PE	BE	R	W	PE	BE	R	W	PE	BE	R	W	PE	BE
0	0	0	0	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0
1	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	Х	Х	0

NOTES:

- 1. R_P: Code Read Protection @CONFIGURE OPTION
- 2. R: Read
- 3. W: Write
- 4. PE: Page erase
- 5. BE: Bulk Erase
- 6. O: Operation is possible.
- 7. X: Operation is impossible.

20.6 Configure option

For the configure option control, corresponding data should be written in the configure option area (003EH to 003FH) by programmer (writer tools).

CONFIGURE OPTION 1: ROM Address 0000H

7	6	5	4	3	2	1	0
_	_	_	ı	PAEN	PASS2	PASS1	PASS0

Initial value: 00H

PAEN	Enable Specific Area Write Protection							
	0	Disab	le Protection	on				
	1	Enabl	e Protectio	on				
PASS [2:0]	Select S	pecific Are	a for Write	Protection				
	NOTE: V	Vhen PAE	N = '1', it is	applied.				
	PASS2	PASS1	PASS0	Description				
	0	0	0	0.7Kbytes (Address 0100H – 03FFH)				
	0	0	1	1.7Kbytes (Address 0100H – 07FFH)				
	0	1	0	2.7Kbytes (Address 0100H – 0BFFH)				
	0	1	1	3.7Kbytes (Address 0100H – 0FFFH)				
	1	0	0	13.7Kbytes (Address 0100H – 37FFH)				
	1	0	1	14.7Kbytes (Address 0100H – 3BFFH)				
	1	1	0	15.2Kbytes (Address 0100H – 3DFFH)				
	1	1	1	15.5Kbytes (Address 0100H – 3EFFH)				

NOTE:

CONFIGURE OPTION 2: ROM Address 0001H (A96G166)

7	6	5	4	3	2	1	0
R_P	HL	_	VAPEN	-	_	-	RSTS

Initial value: 00H

R_P	Code Re	ad Protection					
	0	Disable					
	1	Enable					
HL	Code Wr	ite Protection					
	0	Disable					
	1	Enable					
VAPEN	Vector area (00H~FFH) Protection						
	0	Disable Protection					
	1	Enable Protection					
RSTS	Select RI	ESETB pin					
	0	Disable RESETB pin(P32)					
	1	Enable RESETB pin					
NOTE:							

1. Code write protection and Vector area protection are disabled at OCD Mode.

^{1.} Specific area write protection are disabled at OCD Mode.

CONFIGURE OPTION 2: ROM Address 0001H (A96S166)

7	6	5	4	3	2	1	0
R_P	HL	_	VAPEN	ı	ı	ı	RSTS

Initial value: 00H

Code Read Protection R_P Disable Enable HL Code Write Protection Disable Enable 1 **VAPEN** Vector area (00H~FFH) Protection Disable Protection 1 **Enable Protection RSTS** Select RESETB pin Disable RESETB pin(P35) 0 Enable RESETB pin 1 NOTE:

1. Code write protection and Vector area protection are disabled at OCD Mode.

CONFIGURE OPTION 3: ROM Address 0002H

7	6	5	4	3	2	1	0
PWEN7	PWEN6	PWEN5	PWEN4	PWEN3	PWEN2	PWEN1	PWEN0
RW							

Initial value: 00H

PWEN Enable Password Mode

87H Enable Password Lock
Other values Disable Password Lock

NOTE:

1. If LOCKPWS bit of PWSTS register is 1, PWEN[7:0] is not written.

20.7 Password function

A96G166/A96A166/A96S166 provides security mode which is called "Password Function". This function obtain the additional features listed in Table 42. Password Lock bit allow you to access or not register and flash of the device.

Table 42. Security Mode using Password Lock Bit

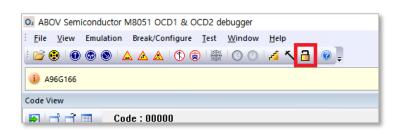
	FLASH									
		MAIN	l area		OTP area					
	R	W	PE	BE	R	W	PE	BE		
LOCKPWS = 0	0	0	0	0	0	0	0	0		
LOCKPWS = 1	Х	Х	Х	Х	*NOTE	Х	Х	Х		

NOTES:

- 1. Page 3(PASSWORD OTP Data) read as 0x00. The other page is readable ordinarily.
 - A. R: Read
 - B. W: Write
 - C. PE: Page erase
 - D. BE: Bulk Erase

PWSTS (PASSWORD Status Register): 2F6DH (A96S166)

7	6	5	4	3	2	1	0
_	_	_	_	LOCKPWS	PWWEDONES	PWMATCHS	PWENS
_	_	_	_	R	R	R	R


Initial value: 00H

LOCKPWS Password Lock Flag 0 Unlock 1 Lock **PWWEDONES** Password data write done Flag Not yet Write done 1 **PWMATCHS** Password match Flag Password mismatch Password match **PWENS** Password function enable/disable Disable 0 Enable



1. Press "config" button

This function can be set up using OCD/E-PGM+/E-GANG4/E-GANG6. See the guide for this feature below.

2. Check "Password" box, and Change the Password(0~11byte)

3. Reset the device, please enter the password. If the password is correct, the device is accessible. Otherwise, the device is not accessible.

NOTE:

If the password do not match, it is not possible to access debug mode and erase flash.

Figure 104. Using OCD/E-PGM+/E-GANG4/E-GANG6.

21. Development tools

This chapter introduces a wide range of development tools for microcontrollers. ABOV offers software tools, debuggers, and programmers to help a user in generating right results to match target applications. ABOV supports entire development ecosystem of the customers.

21.1 Compiler

ABOV semiconductor does not provide any compiler for A96G166/A96A166/A96S166. It is recommended to consult a compiler provider. Since A96G166/A96A166/A96S166 has Mentor 8051 as its core, and ROM is smaller than 64Kbytes in size, a developer can use any standard 8051 compilers of other providers.

21.2 Core and debug tool information

ABOV's 8-bit microcontroller uses OCD (On-Chip Debugger) interface for debugging, which is ABOV's own interface. The OCD not only monitors and controls the core, but also supports the read and write operations of external memory and devices. In addition, it supports memory monitoring and break functions.

Debug interfaces such as OCD interface enable microcontroller to write to internal programmable memory, allowing them to support ISP (In-System Program) that makes possible to write as a single chip or as an embedded chip in the system. Table 43 provides information of the core and debug emulation interface.

Description Value **Device Name** A9xXxxx **Series** 94/ 95/ 96/ 97 series Core M8051/ CM8051 **Extended Stack Pointer** Yes/ no 94, 97 series only OCD 1/OCD 2 **Debug Interface** 4/8 **Number of Break Point Real-time Monitoring** Yes/ no OCD 2 only **Run Flag Port** Yes/ no OCD 2 option

Table 43. Core and Debug Information

NOTES:

- 1. A96G166/A96A166/A96S166 has 96 series core and OCD 1 interface.
- Also, A96G166/A96A166/A96S166 can be operated with OCD II dongle because OCD II dongle includes all of OCD1 function.
- 3. 95 series core is the old version of 96 series core.

21.2.1 Feature of 94/96/97 series core

ABOV's 8-bit microcontroller contains an M8051/CM8051 core that is an improved version of the 8051. The M8051/CM8051 core is compatible with the 8051, and reduces time of operation cycles. It makes development easier by providing the OCD debug function.

ABOV's 8-bit microcontroller has a core of 94-series, 96-series, or 97-series, that is basically compatible with the 8051 series at the instruction set level. A core of each series uses different Debug Interface respectively as shown in Table 44.

Table 44. Core and Debug Interface by Series

	Core	Debug Interface
96 Series	M8051	OCD 1
97 Series	M8051	OCD 2
94 Series	CM8051	OCD 2

Features of each series are compared in Table 45.

Table 45. Feature Comparison Chart By Series and Cores

Table 40. I catale domparison onart by deries and dores				
	96 Series	97 Series	94 Series	
CPU Core	M8051	M8051	CM8051	
Cycle Compatible with MCS51	1/6	1/6	No	
OCD Function	OCD 1	OCD 2	OCD 2	
Program BUS		8-bit		
Data Bus	8-bit IRAM/ XF	RAM separated	8-bit single SRAM	
EA Auto Clear NOTE1	Yes	Yes	Yes	
EA=0, Idle/ Stope Mode Wake up	Yes	Yes	Yes	
Interrupt Priority NOTE2	6 group x 4 level	Interrupt x 4 level	Interrupt x 2 level	
Nested Interrupt Priority	4 level	4 level	Interrupt x 2 level (max. 4 times)	
SFR BUS (read/ write)	Two ports	Two ports	Single port	
Stack Extension	X	0	0	
Register		SRAM		
Register Bank		4		
CPU/ Flash Clock Ratio		x 1		
Pipeline	No	No	2-stage (IF + ID/ EX)	
DHRY Stone Score (I8051: 1.00)	6.0	6.0	8.4	
Average Instruction Set Exe. Cycle Compare with i8051	x 6.0	x 6.0	x 6.4	
Power Consumption/ DHRY (@synthesis)	52.27uA/ MHz	52.27uA/ MHz	30.19 uA/ MHz	

NOTES:

- 1. EA means that All Interrupt Enable bit or Disable bit (Standard 8051).
- 2. Group: When a programmer selects a specific interrupt (e.g. Interrupt1), the whole interrupts: 0, 6, 12, and 18 have higher priorities.
- 3. A96G166/A96A166/A96S166 has 96 series core and OCD 1 interface.
- A96G166/A96A166/A96S166 can be operated with OCD II dongle too, because the OCD II dongle includes all functions of the OCD1.

ABOV's 8-bit microcontrollers maintain binary compatibility with 8051 cores; however, the cores and series have differences in performances, core functionalities, and debug interfaces.

You can see the differences of each series in the following sections.

21.2.2 OCD type of 94/96/97 series core

Cores of 96-series use OCD 1 for a debug interface, while cores of 94-series and 97-series use OCD 2 for debug interfaces. The OCD 1 and OCD 2 use the same method on the Hardware, however, the protocols are incompatible with each other.

In the OCD 2, it is able to measure the emulation time through the "Run Flag" pin.

Table 46. OCD Type of Each Series

Series	96-Series	97-Series	94-Series	Remark
OCD type	OCD 1	OCD 2	OCD 2	

In Table 47, debug interfaces of the OCD 1 and OCD 2 are compared.

Table 47. Comparison of OCD 1 and OCD 2

	Value	Description
OCD 1	Break point MAX.8	PC break only
	Break point MAX.12	With RAM break Code, XDATA, IDATA 1/8/16/32bit compare
OCD 2	Real-time monitoring	Code, XDATA, IDATA
	Frequency output	Examine CPU frequency
	Run Flag port	Option for run time measurement

96 Series - OCD 1

The 96 series supports basic operations of debug interfaces such as Run, Stop, Step, Break point, register reading/writing, Memory reading/writing, and SFR reading/writing.

94 Series and 97 Series - OCD 2

The 94 series and 97 series support the features listed below, as well as the features of the OCD 1 (however, the protocol is not compatible with the OCD1).:

- RTM support: CODE, XDATA, IDATA are updated during the Run Time (Real Time Monitoring available).
- Run Flag support: Emulation Time can be measured in OCD mode (using the Run Flag port).
- RAM Break support: IDATA, SFR, and XDATA break are added.

21.2.3 Interrupt priority of 94/96/97 series core

In the M8051, users can set interrupt priorities by group. The 96-series microcontroller with the basic M8051 core only supports interrupt priorities in group units. In the 94-series or 97-series microcontroller, users set interrupt priorities to have more functions than the existing functions, and can set individual priority for each interrupt source.

Table 48. Interrupt Priorities in Groups and Levels

Series	96-Series	97-Series	94-Series	Remark
				• 96 Series:
Interrupt	6 Grouped	Fully 4 Level	Fully 4 Level	- IP/IP (Interrupt Priority Register)
Priority	4 Level	l dily 4 Level	Tully 4 Level	• 94, 97 Series:
				- IPxL/IPxH (Interrupt Priority Register)

96 Series

- The priorities by group is available only with IP/IP1 settings.
 - With IP/IP1 settings, users can set interrupt priorities by group unit.
 - The interrupt priority of a group unit (4 interrupts in a group) can be changed to the level between 0 and 3 according to the value of IP/IP1.

94, 97 Series

- The individual interrupt priority can be set by setting IPxL/IPxH(x=0~3).
- The individual interrupt priority can be changed to the level between 0 and 3 according to value of IPxL/IPxH(x=0~3).

21.2.4 Extended stack pointer of 94/96/97 series core

The M8051 uses IRAM area for Stack Pointer. However, 94-series and 97-series microcontrollers use both IRAM area and XRAM area for Stack Pointer by configuring additional registers.

The XSP and XSPCR registers are involved in this functionality as described below:

- By configuring the XSP/XSPCR register, you can use the XRAM area for the Stack Pointer.
 - The XSPCR decides whether to use XRAM for Stack Pointer.
- If XSPCR='0', IRAM is available for Stack Pointer.
- If XSPCR='1', XRAM is available for Stack Pointer.
 - The XSP decides the position of XRAM Stack Pointer.
- This is valid only if XSPCR='1'.

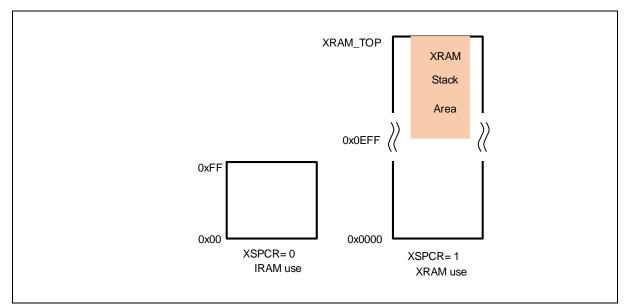


Figure 105. Configuration of the Extended Stack Pointer

STACK_POINTER = {XSP[7:0],SP[7:0]} = XRAM_TOP - STACK_SIZE

Ex) If only 256bytes of XRAM will be used for stack,

- XRAM_TOP = 4K(0x0FFF)
- STACK_SIZE = 256byte(0x0100)
- XSPCR= 1, XSP= 0x0E
- SP=0xFF setting
- Stack Pointer Position = 0x0FFF 0x0100= 0x0EFF

21.3 OCD (On-chip debugger) emulator and debugger

Microcontroller with 8051 cores have an OCD (On-Chip Debugger), a debug emulation block. The OCD is connected to a target microcontroller using two lines such as DSCL and DSDA. The DSCL is used for clock signal and the DSDA is for a bi-directional data.

The two lines work for the core management and control by doing register management and execution, step execution, break point and watch functions. In addition, they control and monitor the internal memory and the device by reading and writing.

Series name 96-series 97-series 94-series OCD function OCD 1 OCD 2 OCD 2 Max. number of breakpoints 8 8 4 Saving stack in XRAM Yes Yes No Yes Yes Real time monitoring No Run flag support No Yes Yes

Table 49. Debug Feature by Series

The OCD 2 applied to 94-series and 97-series provides the RTM (Real Time Monitoring) function that monitors internal memory and I/O status without stopping the debugging. In addition, the OCD 2 provides the breakpoint function (RAM Break Function) for the IDATA, SFR, and XDATA.

The following functions have been extended from the OCD 2:

- Emulation Time can be measured in OCD mode (using the Run Flag port)
- CODE, XDATA, IDATA are updated during the Run Time (Real Time Monitoring available).
- IDATA, SFR, XDATA break are added (RAM Break support).

OCD 1 OCD 2 9. N.C. 9. N.C. 7. N.C. 7. N.C. 5. N.C. 5. RUNFLAG 3. N.C. 3. N.C. 1. N.C. 1. N.C. 2. User VCC 2. User VCC 4. User GND 4. User GND 6. DSCL 6. DSCL 8. DSDA 8. DSDA 10. N.C. 10. N.C.

Figure 106 shows the standard 10-pin connector of OCD 1 and OCD 2.

Figure 106. OCD 1 and OCD 2 Connector Pin Diagram

Table 50 introduces the pins used for the OCD 1 and OCD 2.

Din Name	Microcontroller function in Debug Mode		
Pin Name	Pin Name I/O Description		
DSCL	I	Serial clock pin. Input only pin.	
		Serial data pin.	
DSDA I/O • Ou		Output port when reading and input port when programming.	
IT can be assigned as input/push-pull output port.		IT can be assigned as input/push-pull output port.	
VDD,VSS	_	Logic power supply pin.	

Table 50. OCD 1 and OCD 2 Pin Description

The OCD emulator supports ABOV's 8051 series MCU emulation. The OCD uses two wires that are interfaced between PC and MCU, which is attached to user's system. The OCD can read or change the value of MCU's internal memory and I/O peripherals. In addition, the OCD controls MCU's internal debugging logic. This means OCD controls emulation, step run, monitoring and many more functions regarding debugging.

The OCD debugger program runs underneath MS operating system such as MS-Windows NT/ 2000/ XP/ Vista (32-bit). If you want to see more details, please visit ABOV's website (www.abovsemi.com), and download debugger S/W and corresponding manuals.

Connection:

- DSCL (A96G166/A96A166/A96S166 P01 port)
- DSDA (A96G166/A96A166/A96S166 P00 port)

Figure 107 shows pinouts of OCD connector.

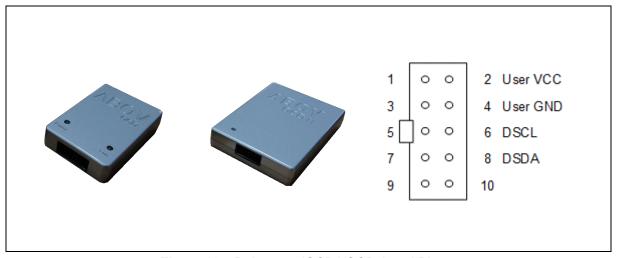


Figure 107. Debugger (OCD1/OCD2) and Pinouts

21.3.1 On-chip debug system

A96G166/A96A166/A96S166 supports On-chip debug (OCD) system. We recommend developing and debugging program with A96G1xx series. The OCD system of A96G166/A96A166/A96S166 can be used for programming the non-volatile memories and on-chip debugging.

In this section, you can find detailed descriptions for programming via the OCD interface. Table 51 introduces features of OCD.

Table 51. OCD Features

Two wire external interface	1 for serial clock input
The time external lines and	1 for bi-directional serial data bus
	All internal peripherals
Debugger accesses	Internal data RAM
Debugger decesses	Program Counter
	Flash memory and data EEPROM memory
	Break instruction
	Single step break
Extensive On-Chip Debugging supports	Program memory break points on single address
for Break Conditions	Programming of Flash, EEPROM, Fuses, and Lock bits through the two-wire interface
	On-Chip Debugging supported by Dr. Choice®
Operating frequency	The maximum frequency of a target MCU.

Target MCU internal circuit

| Solid |

Figure 108 shows a block diagram of the OCD interface and the On-chip Debug system.

Figure 108. On-chip Debugging System in Block Diagram

Entering debug mode

While communicating through the OCD, users can enter the microcontroller into DEBUG mode by applying power to it. This means that the microcontroller enters DEBUG mode when you place specific signals to the DSCL and DSDA at the moment of initialization when the microcontroller is powered on. This requires that you can control power of the microcontroller (VCC or VDD) and need to be careful to place capacitive loads such as large capacity condenser on a power pin.

Please remember that the microcontroller can enter DEBUG mode only when power is applied, and it cannot enter DEBUG mode once the OCD is run.

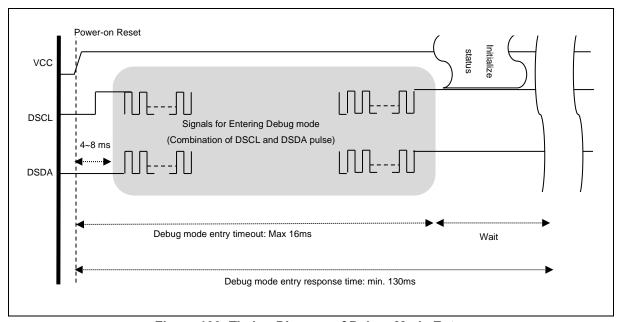


Figure 109. Timing Diagram of Debug Mode Entry

21.3.2 Two-wire communication protocol

For the OCD interface, the semi-duplex communication protocol is used through separate two wires, the DSCL and DSDA. The DSCL is used for serial clock signal and the DSDA is used for bi-directional serial address and data.

A unit packet of transmission data is 10-bit long and consists of a byte of data, 1-bit of parity, and 1-bit of the acknowledge. A parity check bit and a receive acknowledge bit are transmitted to guarantee stability of the data communication. A communication packet includes a start bit and an end bit to indicate the start and end of the communication.

More detailed information of this communication protocol is listed below:

Basic transmission packet

- A 10-bit packet transmission using two-pin interface.
- A packet consists of 8-bit data, 1-bit parity and 1-bit acknowledge.
- Parity is even of '1' for 8-bit data in transmitter.
- Receiver generates acknowledge bit as '0' when transmission for 8-bit data and its parity has no error.
- When transmitter has no acknowledge (Acknowledge bit is '1' at tenth clock), error process is executed in transmitter.
- When acknowledge error is generated, host PC makes stop condition and transmits command which has error again.
- Background debugger command is composed of a bundle of packet.
- Start condition and stop condition notify the start and the stop of background debugger command respectively.

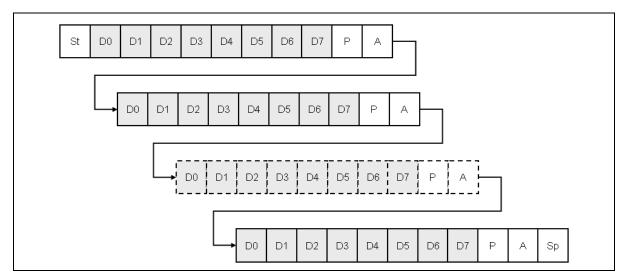


Figure 110. 10-bit Transmission Packet

Packet transmission timing

Figure 111 shows a timing diagram of a packet transmission using the OCD communication protocol.

A start bit in the figure means start of a packet and is valid when the DSDA falls from 'H' to 'L' while External Host maintains the DSCL to 'H'. After the valid start bit, communication data is transferred and received between a Host and a microcontroller.

An end bit means end of the data transmission and is valid when the DSDA changes from 'L' to 'H' while a Debugger maintains DSCL to 'H'. Next, the microcontroller places the bus in a wait state and processes the received data.

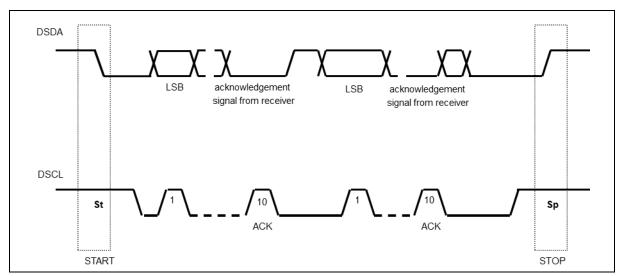


Figure 111. Data Transfer on OCD

Figure 112 shows a timing diagram of each bit based on the state of the DSCL clock and the DSDA data. Similar to I2C signal, the DSDA data is allowed to change when the DSCL is 'L'. If the data changes when DSCL is 'H', the change means 'START' or 'STOP'.

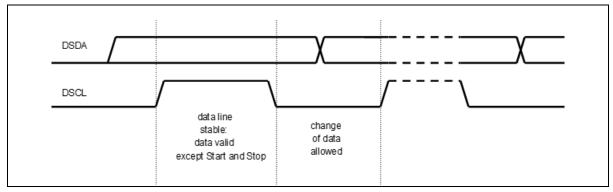


Figure 112. Bit Transfer on Serial Bus

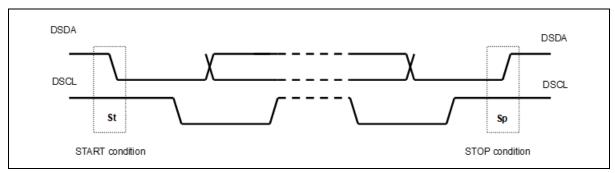


Figure 113. Start and Stop Condition

During the OCD communication, each data byte is transferred in accompany with a parity bit. When data is transferred in succession, a receiver returns the acknowledge bit to inform that it received.

As shown in Figure 114, when transferring data, a receiver outputs the DSDA to 'L' to inform the normal reception of data. If a receiver outputs DSDA to 'H', it means error reception of data.

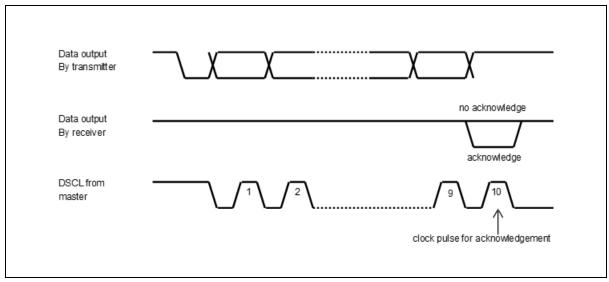


Figure 114. Acknowledge on Serial Bus

While the Host Debugger executes data communications, if a microcontroller needs communication delay or process delay, it can request communication delay to the Host Debugger.

Figure 115 shows timing diagrams where a microcontroller requests communication delay to the Host Debugger. If the microcontroller requests timing delay of the DSCL signal that the Host Debugger outputs, the microcontroller maintains the DSCL signal to 'L' to delay the clock change although the Host Debugger changes DSCL to 'H'.

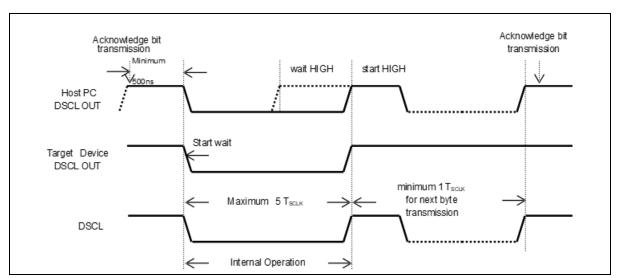


Figure 115. Clock Synchronization during Wait Procedure

21.4 Programmers

21.4.1 E-PGM+

E-PGM+ USB is a single programmer. A user can program A96G166/A96A166/A96S166 directly using the E-PGM+.

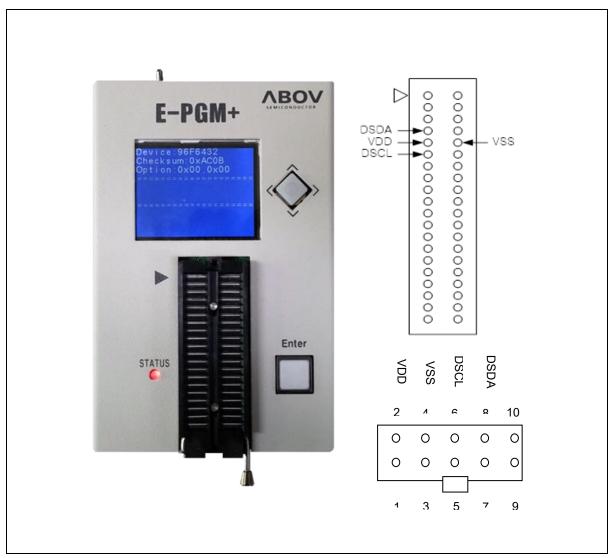


Figure 116. E-PGM+ (Single Writer) and Pinouts

21.4.2 OCD emulator

OCD emulator allows users to write code on the device too, since OCD debugger supports In System Programming (ISP). It doesn't require additional H/W, except developer's target system.

21.4.3 Gang programmer

E-Gang4 and E-Gang6 allow users to program multiple devices simultaneously. They can be run not only in PC controlled mode but also in standalone mode without the PC control.

USB interface is available, and it is easy to connect to the handler.

Figure 117. E-Gang4 and E-Gang6 (for Mass Production)

21.5 Flash programming

Program memory of A96G166/A96A166/A96S166 is a Flash type. The Flash ROM is accessed through four pins such as DSCL, DSDA, VDD and VSS in serial data format. For more information about Flash memory programming, please refer to **20 Memory programming**.

Table 52 introduces corresponding pins and I/O status.

Table 52. Pins for Flash Programming

Pin name	Main chip		During programming		
pin name I/O Description		Description			
DSCL	P01	I	Serial clock pin. Input only pin.		
DSDA	P00	I/O	Serial data pin. Output port when reading and input port when programming. Can be assigned as input/push-pull output port.		
VDD, VSS	VDD, VSS	_	Logic power supply pin.		

21.5.1 On-board programming

Microcontroller need only four signal lines including VDD and VSS pins, tor program the Flash ROM using serial protocol. Therefore, on-board programming is possible if the programming signal lines are considered at the time the PCB of application board is designed.

21.6 Connection of transmission

OCD's two-wire communication interfaces use the Open-Drain Method (Wire-AND Bi-Directional I/O).

Normally, it is recommended to place a resistor greater than $4.7k\Omega$ for the DSCL and DSDA respectively. The capacitive load is recommended to be less than 100pF. Outside these ranges, because the communication may not be accomplished, the connection to Debug mode is not guaranteed.

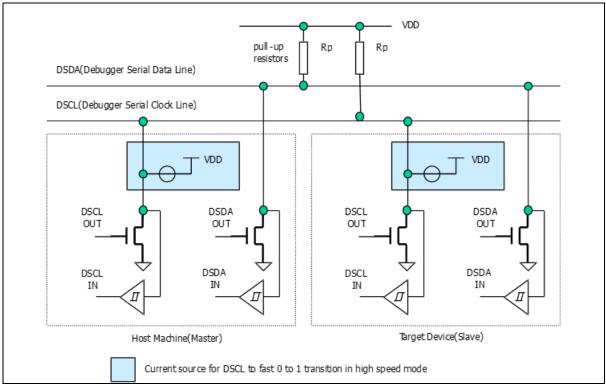
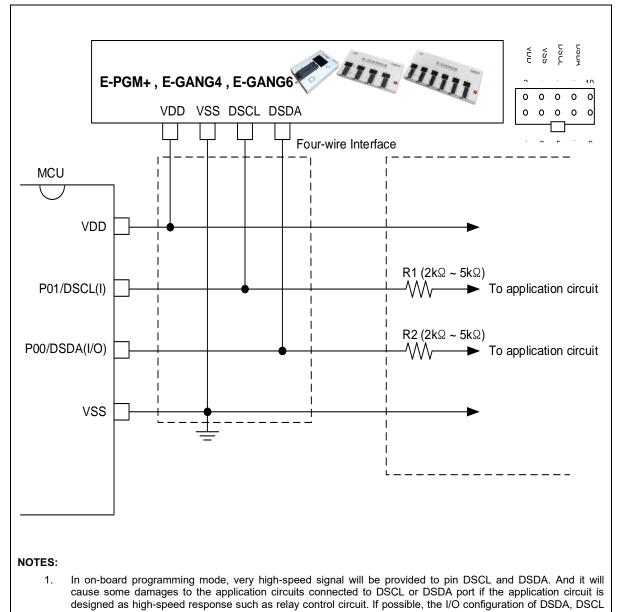


Figure 118. Connection of Transmission

21.7 Circuit design guide


To program Flash memory, programming tools require 4 signal lines, DSCL, DSDA, VDD, and VSS. When designing a PCB circuit, you should consider these 4 signal lines for on-board programming. In addition, you need to be careful when designing the related circuit of these signal pins, because rising/falling timing of the DSCL and DSDA is very important for proper programming.

When you use the OCD pins exclusively or share them with other functions, it needs to be careful, too.

Figure 119 shows an example circuit where the OCD pins (DSCL and DSDA) are shared with other functions. They must be connected when debugging or executing In System Program (ISP).

Normally, the OCD pins are connected to outside to execute the predefined functions. Even when they are connected for debugging or executing ISP directly, the OCD pins are shared with other functions by using resistors as shown in Figure 119. By doing this, the OCD pins process the normal external signals and execute the OCD functions first when they are shared.

pins had better be set to input mode.

2. The value of R1 and R2 is recommended value. It varies with circuit of system.

Figure 119. PCB Design Guide for On-Board Programming

Appendix

Instruction table

Instructions are either 1, 2 or 3 bytes long as listed in the 'Bytes' column below. Each instruction takes either 1, 2 or 4 machine cycles to execute as listed in the following table. 1 machine cycle comprises 2 system clock cycles.

Table 53. Instruction Table

ARITHMETIC					
Mnemonic	Description	Bytes	Cycles	Hex code	
ADD A,Rn	Add register to A	1	1	28-2F	
ADD A,dir	Add direct byte to A	2	1	25	
ADD A,@Ri	Add indirect memory to A	1	1	26-27	
ADD A,#data	Add immediate to A	2	1	24	
ADDC A,Rn	Add register to A with carry	1	1	38-3F	
ADDC A,dir	Add direct byte to A with carry	2	1	35	
ADDC A,@Ri	Add indirect memory to A with carry	1	1	36-37	
ADDC A,#data	Add immediate to A with carry	2	1	34	
SUBB A,Rn	Subtract register from A with borrow	1	1	98-9F	
SUBB A,dir	Subtract direct byte from A with borrow	2	1	95	
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	1	96-97	
SUBB A,#data	Subtract immediate from A with borrow	2	1	94	
INC A	Increment A	1	1	04	
INC Rn	Increment register	1	1	08-0F	
INC dir	Increment direct byte	2	1	05	
INC @Ri	Increment indirect memory	1	1	06-07	
DEC A	Decrement A	1	1	14	
DEC Rn	Decrement register	1	1	18-1F	
DEC dir	Decrement direct byte	2	1	15	
DEC @Ri	Decrement indirect memory	1	1	16-17	
INC DPTR	Increment data pointer	1	2	A3	
MUL AB	Multiply A by B	1	4	A4	
DIV AB	Divide A by B	1	4	84	
DAA	Decimal Adjust A	1	1	D4	

LOGICAL					
Mnemonic	Description	Bytes	Cycles	Hex code	
ANL A,Rn	AND register to A	1	1	58-5F	
ANL A,dir	AND direct byte to A	2	1	55	
ANL A,@Ri	AND indirect memory to A	1	1	56-57	
ANL A,#data	AND immediate to A	2	1	54	
ANL dir,A	AND A to direct byte	2	1	52	
ANL dir,#data	AND immediate to direct byte	3	2	53	
ORL A,Rn	OR register to A	1	1	48-4F	
ORL A,dir	OR direct byte to A	2	1	45	
ORL A,@Ri	OR indirect memory to A	1	1	46-47	
ORL A,#data	OR immediate to A	2	1	44	
ORL dir,A	OR A to direct byte	2	1	42	
ORL dir,#data	OR immediate to direct byte	3	2	43	
XRL A,Rn	Exclusive-OR register to A	1	1	68-6F	
XRL A,dir	Exclusive-OR direct byte to A	2	1	65	
XRL A, @Ri	Exclusive-OR indirect memory to A	1	1	66-67	
XRL A,#data	Exclusive-OR immediate to A	2	1	64	
XRL dir,A	Exclusive-OR A to direct byte	2	1	62	
XRL dir,#data	Exclusive-OR immediate to direct byte	3	2	63	
CLR A	Clear A	1	1	E4	
CPL A	Complement A	1	1	F4	
SWAP A	Swap Nibbles of A	1	1	C4	
RLA	Rotate A left	1	1	23	
RLC A	Rotate A left through carry	1	1	33	
RR A	Rotate A right	1	1	03	
RRC A	Rotate A right through carry	1	1	13	

	DATA TRANSFER			
Mnemonic	Description	Bytes	Cycles	Hex code
MOV A,Rn	Move register to A	1	1	E8-EF
MOV A,dir	Move direct byte to A	2	1	E5
MOV A,@Ri	Move indirect memory to A	1	1	E6-E7
MOV A,#data	Move immediate to A	2	1	74
MOV Rn,A	Move A to register	1	1	F8-FF
MOV Rn,dir	Move direct byte to register	2	2	A8-AF
MOV Rn,#data	Move immediate to register	2	1	78-7F
MOV dir,A	Move A to direct byte	2	1	F5
MOV dir,Rn	Move register to direct byte	2	2	88-8F
MOV dir,dir	Move direct byte to direct byte	3	2	85
MOV dir,@Ri	Move indirect memory to direct byte	2	2	86-87
MOV dir,#data	Move immediate to direct byte	3	2	75
MOV @Ri,A	Move A to indirect memory	1	1	F6-F7
MOV @Ri,dir	Move direct byte to indirect memory	2	2	A6-A7
MOV @Ri,#data	Move immediate to indirect memory	2	1	76-77
MOV DPTR,#data	Move immediate to data pointer	3	2	90
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	2	93
MOVC A,@A+PC	Move code byte relative PC to A	1	2	83
MOVX A,@Ri	Move external data(A8) to A	1	2	E2-E3
MOVX A,@DPTR	Move external data(A16) to A	1	2	E0
MOVX @Ri,A	Move A to external data(A8)	1	2	F2-F3
MOVX @DPTR,A	Move A to external data(A16)	1	2	F0
PUSH dir	Push direct byte onto stack	2	2	C0
POP dir	Pop direct byte from stack	2	2	D0
XCH A,Rn	Exchange A and register	1	1	C8-CF
XCH A,dir	Exchange A and direct byte	2	1	C5
XCH A,@Ri	Exchange A and indirect memory	1	1	C6-C7
XCHD A,@Ri	Exchange A and indirect memory nibble	1	1	D6-D7

BOOLEAN					
Mnemonic	Description	Bytes	Cycles	Hex code	
CLR C	Clear carry	1	1	C3	
CLR bit	Clear direct bit	2	1	C2	
SETB C	Set carry	1	1	D3	
SETB bit	Set direct bit	2	1	D2	
CPL C	Complement carry	1	1	В3	
CPL bit	Complement direct bit	2	1	B2	
ANL C,bit	AND direct bit to carry	2	2	82	
ANL C,/bit	AND direct bit inverse to carry	2	2	В0	
ORL C,bit	OR direct bit to carry	2	2	72	
ORL C,/bit	OR direct bit inverse to carry	2	2	A0	
MOV C,bit	Move direct bit to carry	2	1	A2	
MOV bit,C	Move carry to direct bit	2	2	92	

BRANCHING					
Mnemonic	Description	Bytes	Cycles	Hex code	
ACALL addr 11	Absolute jump to subroutine	2	2	11→F1	
LCALL addr 16	Long jump to subroutine	3	2	12	
RET	Return from subroutine	1	2	22	
RETI	Return from interrupt	1	2	32	
AJMP addr 11	Absolute jump unconditional	2	2	01→E1	
LJMP addr 16	Long jump unconditional	3	2	02	
SJMP rel	Short jump (relative address)	2	2	80	
JC rel	Jump on carry = 1	2	2	40	
JNC rel	Jump on carry = 0	2	2	50	
JB bit,rel	Jump on direct bit = 1	3	2	20	
JNB bit,rel	Jump on direct bit = 0	3	2	30	
JBC bit,rel	Jump on direct bit = 1 and clear	3	2	10	
JMP @A+DPTR	Jump indirect relative DPTR	1	2	73	
JZ rel	Jump on accumulator = 0	2	2	60	
JNZ rel	Jump on accumulator ≠0	2	2	70	
CJNE A,dir,rel	Compare A, direct jne relative	3	2	B5	
CJNE A,#d,rel	Compare A, immediate jne relative	3	2	B4	
CJNE Rn,#d,rel	Compare register, immediate jne relative	3	2	B8-BF	
CJNE @Ri,#d,rel	Compare indirect, immediate jne relative	3	2	B6-B7	
DJNZ Rn,rel	Decrement register, jnz relative	2	2	D8-DF	
DJNZ dir,rel	Decrement direct byte, jnz relative	3	2	D5	

MISCELLANEOUS					
Mnemonic	Description	Description Bytes Cycles He			
NOP	No operation 1 1 00				
ADDITIONAL INSTRUCTIONS (selected through EO[7:4])					
Mnemonic	Description Bytes		Cycles	Hex code	
MOVC	M8051W/M8051EW-specific instruction supporting	1	2	A5	
@(DPTR++),A	software download into program memory		_	7.0	

In the above table, entries such as E8-EF indicate continuous blocks of hex opcodes used for 8 different registers. Register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as '11 \rightarrow F1' (for example), are used for absolute jumps and calls, with the top 3 bits of the code being used to store the top three bits of the destination address.

CJNE instructions use abbreviation of #d for immediate data; other instructions use #data as an abbreviation.

Revision history

Date	Revision	Description
2019.10.29	1.00	First creation
2019.11.07	1.01	Modified temperature specification.
	1.01	Updated "20.3 A/D converter characteristics" on page 202
		Updated "20.5 Power on reset characteristics" on page 203.
2019.12.03	1.02	Updated "20.6 Low voltage reset and low voltage indicator characteristics" on
		page 204.
2020.04.20	1.03	Updated Figure 3
2020.05.22	1.04	Modified "Low voltage reset and low voltage indicator characteristics"
		Changed the name of P1DB to P12DB at Table 3. SFR Map Summary.
		Changed the name of each bit for P12DB at P12DB register description.
		Corrected the I/O symbol of LED0 ~ LED7 to O at Table 2. Normal Pin Description.
		Corrected an address typo of FPCR0, RTOCH0 and RTOCL0 register at Table
		28. USART Register Map and 15.12 Register description.
2020.06.08	1.05	Deleted AVREF at Figure 58. 12-bit ADC Block Diagram.
		Deleted Figure 58. A/D Power (AVREF) Pin with a Capacitor.
		Changed the maximum analog input voltage to VDD at Table 45. A/D Converter
		Characteristics.
		Updated Basic Interval Timer Block Diagram at Figure 27.
		Added the description of VLVD/VLVI at Table 49. LVR and LVI Characteristics.
		Extended maximum operating temperature up to 105 C as well as 85 C.
	1.06	Enhanced the minimum ADC operation voltage to 2.2V at Table 45. A/D
		Converter Characteristics.
		Deleted Analog Reference Voltage item at Table 45. A/D Converter
		Characteristics.
		Added the note of "Guaranteed by design" at Table 46. Recommended ADC Resolution.
		Corrected the conditions of Input High/Low Leakage Current and Supply Current at Table 52. DC Characteristics.
		Corrected the symbol of package type at Figure 144.
2020.07.17		A96G166/A96A166/A96S166 Device Numbering Nomenclature.
		Added 16 SOPN package at Figure 2. A96G166 16SOPN Pin Assignment, Table
		2. Normal Pin Description and Figure 126 16 SOPN Package Outline.
		Added A96G166AE at Table 66. A96G166/A96A166/A96S166 Device Ordering Information.
		Updated the table and figures for USART characteristics in 20 Electrical characteristics.
		Corrected the typo for Flash size at Figure 1. A96G166/A96A166/A96S166 Block Diagram.

2020.08.31 1.08 Advanced Flash Endurance times from 10,000 to 30,000. 2020.09.28 1.09	2020.07.31	1.07	Corrected the typo of P2FSRH and P3FSRL at 5.4 P2 port and 5.5 P3 port paragraph.
1.09 Updated a typo at Figure 86. Fast VDD Rising Time and Figure 87. Internal RESET Release Timing On Power-Up. Added a new device of A96A166FD. Modified the bit position of EIDC1 at 6.11.6 Interrupt register description. Modified the invalid number of USART at Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts. Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description of CONFIGURE OPTION 3 register. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of TXE bit in UnCTRL2 register 1 Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2020.08.31	1.08	
RESET Release Timing On Power-Up. Added a new device of A96A166FD. Modified the bit position of EIPOL1 at 6.11.6 Interrupt register description. Modified the invalid number of USART at Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts. Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of TXE bit in UnCTRL2 register 16.7 USART transmitter Corrected the name of UncTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time			Updated the initial value at Table 5. SFR Map.
Added a new device of A96A166FD. Modified the bit position of EIPOL1 at 6.11.6 Interrupt register description. Modified the invalid number of USART at Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts. 2021.04.02 1.11 Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description of CONFIGURE OPTION 3 register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time	2020.09.28	1.09	Updated a typo at Figure 86. Fast VDD Rising Time and Figure 87. Internal
1.10 Modified the bit position of EIPOL1 at 6.11.6 Interrupt register description. Modified the invalid number of USART at Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts. Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. Corrected the description of CONFIGURE OPTION 3 register. Corrected the description of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			RESET Release Timing On Power-Up.
1.10 Modified the invalid number of USART at Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts. Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated 21 Development tools chapter. Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. Corrected the description of CONFIGURE OPTION 3 register. Corrected the description of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time			Added a new device of A96A166FD.
Modified the invalid number of USART at Table 1. A96G166/A96A166/A96S166 Device Features and Peripheral Counts. Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time	2021 01 13	1.10	Modified the bit position of EIPOL1 at 6.11.6 Interrupt register description.
2021.04.02 1.11 Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. Corrected the description of CONFIGURE OPTION 3 register. 2022.08.19 1.15 Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time			
2021.04.02 1.11 P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3). Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTh Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time			
Corrected the description of CONFIGURE OPTION 1 register at 19.6 Configure option. Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.08.19 1.16 Revised the font of this document Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time	2021.04.02	1.11	Corrected the typo of P3FSRL and IE2 at 6.5.2 Register description for
Configure option. 1.12 Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. Corrected the description of CONFIGURE OPTION 3 register. Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time			P3 and 7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3).
1.12 Updated High Speed Internal RC Oscillator Tolerance at Table 50. High Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Corrected the description of CONFIGURE OPTION 1 register at 19.6
Speed Internal RC Oscillator Characteristics. Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Configure option.
Corrected the frequency unit from KHz to kHz. 2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2021.04.22	1.12	Updated High Speed Internal RC Oscillator Tolerance at Table 50. High
2021.05.20 1.13 Updated the U1STAT SFR address(0xF8 → 0xF7) Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTCR register at page 86. Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Speed Internal RC Oscillator Characteristics.
Added 4 Central processing unit. Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Corrected the frequency unit from KHz to kHz.
Updated 21 Development tools chapter. Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2021.05.20	1.13	Updated the U1STAT SFR address(0xF8 → 0xF7)
2022.04.11 1.14 Removed Electrical characteristics, Package information, Ordering information. Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment		1.14	Added 4 Central processing unit.
Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1). Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Updated 21 Development tools chapter.
Corrected the description for WDTRTI of WDTCR register at page 86. 2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2022.04.11		Removed Electrical characteristics, Package information, Ordering information.
2022.08.19 1.15 Corrected the order of Configure option registers. Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Corrected the address of UnSTAT at Figure 71. USARTn Block Diagram (n=0,1).
2022.08.19 1.15 Corrected the description of CONFIGURE OPTION 3 register. 2022.10.13 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Corrected the description for WDTRTI of WDTCR register at page 86.
Corrected the description of CONFIGURE OPTION 3 register. 1.16 Revised the font of this document Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2022 09 10	1.15	Corrected the order of Configure option registers.
Corrected the description of 12.2.3 16-bit PPG mode Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2022.00.19		Corrected the description of CONFIGURE OPTION 3 register.
Corrected Control Registers and Align Bits at Figure 61. Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2022.10.13	1.16	Revised the font of this document
Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment		1.17	Corrected the description of 12.2.3 16-bit PPG mode
2023.03.31 1.17 Corrected the name of UnCTRL2 (USART Control 2 Register) Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Corrected Control Registers and Align Bits at Figure 61.
Rearrange formatting within documents Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Corrected the name of TXE bit in UnCTRL2 register at 16.7 USART transmitter
Modified the A96G166 24 QFN Pin Assignment. Updated External resetb input time 2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment	2023.03.31		Corrected the name of UnCTRL2 (USART Control 2 Register)
Updated External resetb input time 2023.07.12			Rearrange formatting within documents
2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Modified the A96G166 24 QFN Pin Assignment.
2023.07.12 1.18 Updated the A96G166 28 TSSOP Pin Assignment			Updated External resetb input time
2024.06.04 1.19 Added High current port descriptions.	2023.07.12	1.18	
	2024.06.04	1.19	Added High current port descriptions.

Korea

Regional Office, Seoul R&D, Marketing & Sales 8th Fl., 330, Yeongdong-daero, Gangnam-gu, Seoul, 06177, Korea

Tel: +82-2-2193-2200 Fax: +82-2-508-6903 http://www.abovsemi.com/

Domestic Sales Manager

Tel: +82-2-2193-2206 Fax: +82-2-508-6903 Email: <u>sales_kr@abov.co.kr</u> HQ, Ochang R&D, QA, and Test Center 37, Gangni 1-gil, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do, 28126, Korea

Tel: +82-43-219-5200 Fax: +82-43-217-3534 http://www.abovsemi.com/

Global Sales Manager

Tel: +82-2-2193-2281 Fax: +82-2-508-6903 Email: <u>sales_gl@abov.co.kr</u> China Sales Manager

Tel: +86-755-8287-2205 Fax: +86-755-8287-2204 Email: sales cn@abov.co.kr

ABOV Disclaimer

IMPORTANT NOTICE - PLEASE READ CAREFULLY

ABOV Semiconductor ("ABOV") reserves the right to make changes, corrections, enhancements, modifications, and improvements to ABOV products and/or to this document at any time without notice. ABOV does not give warranties as to the accuracy or completeness of the information included herein. Purchasers should obtain the latest relevant information of ABOV products before placing orders. Purchasers are entirely responsible for the choice, selection, and use of ABOV products and ABOV assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to are intellectual property rights is granted by ABOV herein. ABOV disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of ABOV products in such unauthorized applications. ABOV and the ABOV logo are trademarks of ABOV. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces the information previously supplied in any former versions of this document.

© 2019-2024 ABOV Semiconductor - All rights reserved

