

16 MHz 8-bit A96G140/A96G148/A96A148 Microcontroller 64/32 Kbyte Flash memory, 12-bit ADC, 6 Timers, USART, USI, High Current Port

UM Rev. 1.33

Introduction

This user's manual targets application developers who use A96G140/A96G148/A96A148 for their specific needs. It provides complete information of how to use A96G140/A96G148/A96A148 device. Standard functions and blocks including corresponding register information of A96G140/ A96G148/ A96A148 are introduced in each chapter, while instruction set is in Appendix.

A96G140/A96G148/A96A148 is based on M8051 core and provides standard features of 8051 such as 8-bit ALU, PC, 8-bit registers, timers and counters, serial data communication, PSW, DPTR, SP, 8-bit data bus and 2x16-bit address bus, and 8/11/16-bit operations.

In addition, this device incorporates followings to offer highly flexible and cost-effective solutions: 64Kbytes of FLASH, 256bytes of IRAM, 2304bytes of XRAM, general purpose I/O, basic interval timer, watchdog timer, 8/16-bit timer/counter, 16-bit PPG output, 8-bit PWM output, 16-bit PWM output, watch timer, buzzer driving port, USI, 12-bit A/D converter, on-chip POR, LVR, LVI, on-chip oscillator and clock circuitry.

As a field proven best seller, A96G140/A96G148/A96A148 has been sold more than 3 billion units up to now, and introduces rich features such as excellent noise immunity, code optimization, cost effectiveness, and so on.

Reference document

- A96G140/A96G148/A96A148 programming tools and manuals released by ABOV: They are available at ABOV website, <u>www.abovsemi.com</u>.
- SDK-51 User's guide (System Design Kit) released by Intel in 1982: It contains all of components of a single-board computer based on Intel's 8051 single-chip microcomputer
- Information on Mentor Graphics 8051 microcontroller: The technical document is provided at Mentor® website: https://www.mentor.com/products/ip/peripheral/microcontroller/

Contents

Intro	duction			1	
Refe	erence	documer	nt	1	
1	Descr	Description			
	1.1	Device	overview	.13	
	1.2	1.2 A96G140/A96G148/A96A148 block diagram			
2	Pinouts and pin description			. 16	
	2.1	2.1 Pinouts			
	2.2	Pin des	scription	.23	
3	Port s	structures			
4	Centra	Central Processing Unit (CPU)			
	4.1	Architecture and registers		. 30	
	4.2	Addressing			
_	4.3	Instruct	tion set	.33	
5	Memo	ory organ	nization	.35	
	5.1	Prograi	m memory	.35	
	5.2	Data m	emory	.36	
	5.3	Externa	al data memory	.38	
	5.4	SFRm		.39	
		5.4.1	SFR map summary	.39	
		5.4.2		.41	
<u> </u>		5.4.3	Complier compatible SFR	.40	
6		Dort ro	ziataz	.48	
	6.1	FUILIE	Dete register (Dv)	.40 10	
		0.1.1	Direction register (PXIO)	.40 10	
		0.1.Z	Pull up register coloction register (PxIO)	.40 10	
		614	Open drain Selection Register (PXPO)	.40 10	
		615	De-bounce Enable Register (PXDB)	.40 //8	
		616	Port Function Selection Pagister (PXESP)	.40 //8	
		617	Register Man	.40 /0	
	62	P0 port		50	
	0.2	621	P0 part description	50	
		622	Register description for P0	.00	
	63	P1 port		.00	
	0.0	631	P1 port description	54	
		6.3.2	Register description for P1	.54	
	6.4	P2 port	· · · · · · · · · · · · · · · · · · ·	.58	
		6.4.1	P2 port description	.58	
		6.4.2	Register description for P2	.58	
	6.5	P3 port		.60	
		6.5.1	P3 port description	.60	
		6.5.2	Register description for P3	.60	
	6.6	P4 port	· · · · · · · · · · · · · · · · · · ·	.62	
		6.6.1	P4 port description	.62	
		6.6.2	Register description for P4	.62	
	6.7	P5 port		.64	
		6.7.1	P5 port description	.64	
		6.7.2	Register description for P5	.64	

7	Interru	upt controller	66	
	7.1	External interrupt		
	7.2	Block diagram	69	
	7.3	Interrupt vector table	70	
	7.4	Interrupt sequence	71	
	7.5	Effective timing after controlling interrupt bit	72	
	7.6	Multi-interrupt	73	
	7.7	Interrupt enable accept timing	74	
	7.8	Interrupt service routine address	74	
	7.9	Saving/restore general purpose registers	74	
	7.10	Interrupt timing	75	
	7.11	Interrupt register overview	76	
		7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3)	76	
		7.11.2 Interrupt Priority Register (IP and IP1)	76	
		7.11.3 External Interrupt Flag Register (EIFLAG0 and EIFLAG1)	76	
		7.11.4 External Interrupt Polarity Register (EIPOL0L, EIPOL0H, and EIPOL1)	76	
		7.11.5 Register map	76	
		7.11.6 Interrupt register description	77	
8	Clock	generator	83	
	8.1	Clock generator block diagram	84	
	8.2	Register map	84	
	8.3	Register description	85	
9	Basic	interval timer	87	
	9.1	BIT block diagram	87	
	9.2	BIT register map		
	9.3	BIT register description		
10	Watch	ndog timer		
	10.1 WDT interrupt timing waveform			
	10.2	2 WDT block diagram		
	10.2	Register man	90	
	10.0	Register description	Q1	
11	Watch	n timer	92	
	11 1	WT block diagram		
	11.1	Register man		
	11.2	Watch timer register description	90 03	
12	Timor		95	
12	12.1	Timer 0	95	
	12.1	12.1.1. 9 bit timer/counter mode	90	
		12.1.2 9 bit DW/M mode		
		12.1.2 8 bit conture mode	97	
		12.1.3 6-bit Capture mode	99	
		12.1.4 Timer o block diagram	101	
		12.1.5 Register map	101	
	10.0		102	
	12.2		104	
		12.2.1 To-bit timer/counter mode	104	
		12.2.2 16-DIT Capture mode	106	
		12.2.3 16-DIT PPG mode	108	
		12.2.4 16-Dit timer 1 block diagram	110	
		12.2.5 Register map	110	
		12.2.6 Register description	111	

	12.3	Timer 2	114
		12.3.1 16-bit timer/counter mode	114
		12.3.2 16-bit capture mode	116
		12.3.3 16-bit PPG mode	118
		12.3.4 16-bit timer 2 block diagram	120
	12.3.5 Register map	120	
	12.3.6 Register description	121	
	12.4	Timer 3	123
		12.4.1 16-bit timer/counter mode	123
		12.4.2 16-bit capture mode	125
		12.4.3 16-bit PPG mode	127
		12.4.4 16-bit timer 3 block diagram	129
		12.4.5 Register map	129
		12.4.6 Register description	130
	12.5	Timer 4	133
		12.5.1 16-bit timer/counter mode	133
		12.5.2 16-bit capture mode	135
		12.5.3 16-bit PPG mode	137
		12.5.4 16-bit timer 4 block diagram	139
		12.5.5 Register map	139
		12.5.6 Register description	140
	12.6	Timer 5	142
		12.6.1 16-bit timer/counter mode	142
		12.6.2 16-bit capture mode	144
		12.6.3 16-bit PPG mode	146
		12.6.4 16-bit timer 5 block diagram	148
		12.6.5 Register map	148
		12.6.6 Register description	149
13	Buzze	er driver	151
	13.1	Buzzer driver block diagram	151
	13.2	Register map	152
	13.3	Register description	152
14	12-bit	ADC	153
	14.1	Conversion timing	153
	14.2	Block diagram	154
	14.3	ADC operation	155
	14.4	Register map	156
	14.5	Register description	157
15	USI (L	JSART + SPI + I2C)	160
	15.1	USIn UART mode	160
	15.2	USIn UART block diagram	161
	15.3	USIn clock generation	162
	15.4	USIn external clock (SCKn)	163
	15.5	USIn synchronous mode operation	163
	15.6	USIN UART data format	164
	15.7	USIN UAR I parity bit	165
	15.8	USIN UART transmitter	166
		15.8.1 USIn UAR I sending IX data	166
		15.8.2 USIN UAR I transmitter flag and interrupt	166
		15.8.3 USIN UAR I parity generator	166

		15.8.4 USIn UART disabling transmitter	. 166
	15.9	USIn UART receiver	. 167
		15.9.1 USIn UART receiver RX data	. 167
		15.9.2 USIn UART receiver flag and interrupt	. 167
		15.9.3 USIn UART parity checker	. 168
		15.9.4 USIn UART disabling receiver	. 168
		15.9.5 USIn Asynchronous data reception	. 168
	15.10	USIn SPI mode	. 170
	15.11	USIn SPI clock formats and timing	. 171
	15.12	USIn SPI block diagram	. 173
	15.13	USIn I2C mode	.173
	15.14	USIn I2C bit transfer	. 174
	15.15	USIn I2C start/ repeated start/ stop	. 174
	15.16	USIn I2C data transfer	. 175
	15.17	USIn I2C acknowledge	. 175
	15.18	USIn I2C synchronization/ arbitration	.176
	15.19	USIn I2C operation	. 177
		15.19.1 USIn I2C master transmitter	. 177
		15.19.2 USIn I2C master receiver	.179
		15.19.3 USIn I2C slave transmitter	. 181
		15.19.4 USIn I2C slave receiver	. 182
	15.20	USIn I2C block diagram	.183
	15.21	Register map	.184
	15.22	USIn register description	. 185
	15.23	Baud rate settings (example)	.193
16	USART2		.195
	16.1	Block diagram	.196
	16.2	Clock generation	.197
	16.3	External clock (XCK)	198
	16.4	Synchronous mode operation	. 198
	16.5	Data format	.199
	16.6	Parity bit	.200
	16.7		
		USAR I 2 transmitter	.200
		16.7.1 Sending Tx data	.200
		16.7.2 Transmitter flag and interrupt	.200
		16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator	.200 .200 .200 .200
		 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator	.200 .200 .200 .200 .201
	16.8	16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver	.200 .200 .200 .201 .201 .201
	16.8	16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data	.200 .200 .200 .201 .201 .201 .201
	16.8	 16.7.1 Sending Tx data	.200 .200 .200 .201 .201 .201 .201 .201
	16.8	USAR12 transmitter 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker	.200 .200 .200 .201 .201 .201 .201 .201
	16.8	USAR12 transmitter 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver	.200 .200 .200 .201 .201 .201 .201 .201
	16.8	 16.7.1 Sending Tx data	.200 .200 .200 .201 .201 .201 .201 .201
	16.8	 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception 	.200 .200 .200 .201 .201 .201 .201 .201
	16.8	 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception SPI mode 16.9.1 SPI clock formats and timing 	.200 .200 .200 .201 .201 .201 .201 .201
	16.8 16.9 16.10	 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception SPI mode 16.9.1 SPI clock formats and timing Receiver time out (RTO) 	.200 .200 .200 .201 .201 .201 .201 .201
	16.8 16.9 16.10 16.11	USAR12 transmitter 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception SPI mode 16.9.1 SPI clock formats and timing Receiver time out (RTO) Register map	.200 .200 .200 .201 .201 .201 .201 .201
	16.8 16.9 16.10 16.11 16.12	USAR12 transmitter 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception SPI mode 16.9.1 SPI clock formats and timing Receiver time out (RTO) Register map Register description	.200 .200 .201 .201 .201 .201 .201 .201
	16.8 16.9 16.10 16.11 16.12 16.13	USAR12 transmitter 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception SPI mode 16.9.1 SPI clock formats and timing Receiver time out (RTO) Register map Register description Baud rate settings (example)	.200 .200 .200 .201 .201 .201 .201 .201
	16.8 16.9 16.10 16.11 16.12 16.13	USAR12 transmitter 16.7.1 Sending Tx data 16.7.2 Transmitter flag and interrupt 16.7.3 Parity generator 16.7.4 Disabling transmitter USART2 receiver 16.8.1 Receiving Rx data 16.8.2 Receiver flag and interrupt 16.8.3 Parity checker 16.8.4 Disabling receiver 16.8.5 Asynchronous data reception SPI mode 16.9.1 SPI clock formats and timing Receiver time out (RTO) Register map Register description Baud rate settings (example)	.200 .200 .200 .201 .201 .201 .201 .201

17	Powe	r down operation	218
	17.1	Peripheral operation in IDLE/ STOP mode	218
	17.2	IDLE mode	219
	17.3	STOP mode	
	17.4	Released operation of STOP mode	
	17.5	Register map	
	17.6	Register description	
18	Rese	t	
	18.1	Reset block diagram	
	18.2	Power on reset	
	18.3	External resetb input	
	18.4	Low voltage reset process	
	18.5	LVI block diagram	
	18.6	Register Map	
	18.7	Reset Operation Register Description	
19	Memo	programming	
	19.1	Flash control and status registers	
		19.1.1 Register map	
		19.1.2 Register description	234
	19.2	Memory map	241
		19.2.1 Flash memory map	241
	19.3	Serial in-system program mode	242
		19.3.1 Flash operation	242
	19.4	Mode entrance method of ISP mode	
		19.4.1 Mode entrance method for ISP	
	19.5	Security	249
	19.6	Configure option	
20	Deve	lopment tools	
	20.1	Compiler	
	20.2	Core and debug tool information	
		20.2.1 Feature of 94/96/97 series core	
		20.2.2 OCD type of 94/96/97 series core	
		20.2.3 Interrupt priority of 94/96/97 series core	
		20.2.4 Extended stack pointer of 94/96/97 series core	
	20.3	OCD (On-chip debugger) emulator and debugger	
		20.3.1 On-chip debug system	
		20.3.2 Two-wire communication protocol	
	20.4	Programmers	
		20.4.1 E-PGM+	
		20.4.2 OCD emulator	
		20.4.3 Gang programmer	
	20.5	Flash programming	
		20.5.1 On-board programming	
	20.6	Connection of transmission	
	20.7	Circuit design guide	270
Арр	endix		271
	Instru	ction table	271
Rev	ision hi	story	277

List of figures

Figure 1. A	\96G140/A96G148/A96A148 Block Diagram	15			
Figure 2. A	A96G140/A96G148 48LQFP Pin Assignment10				
Figure 3. A	v96G140/A96G148 48QFN Pin Assignment	17			
Figure 4. A	v96G140/A96G148 44MQFP-1010 Pin Assignment	18			
Figure 5. A	v96G140/A96G148 44LQFP-1010 Pin Assignment	19			
Figure 6. A	v96G140/A96G148 32LQFP Pin Assignment	20			
Figure 7. A	v96G140/A96G148 32SOP Pin Assignment	21			
Figure 8. A	v96G140/A96G148 28SOP Pin Assignment	21			
Figure 9. A	96A148 28SOP Pin Assignment	22			
Figure 10.	General Purpose I/O Port	28			
Figure 11.	External Interrupt I/O Port	29			
Figure 12.	M8051EW Architecture	30			
Figure 13.	Program Memory Map	35			
Figure 14.	Data Memory Map	36			
Figure 15.	Lower 128bytes of RAM	37			
Figure 16.	XDATA Memory Area	38			
Figure 17.	Interrupt Group Priority Level	67			
Figure 18.	External Interrupt Description	68			
Figure 19.	Interrupt Controller Block Diagram	69			
Figure 20.	Interrupt Sequence Flow	71			
Figure 21.	Effective Timing of Interrupt Enable Register	72			
Figure 22.	Effective Timing of Interrupt Flag Register	72			
Figure 23.	Effective Timing of Multi-Interrupt	73			
Figure 24.	Interrupt Response Timing Diagram	74			
Figure 25.	Correspondence between Vector Table Address and the Entry Address of ISR	74			
Figure 25. Figure 26.	Correspondence between Vector Table Address and the Entry Address of ISR	74 74			
Figure 25. Figure 26. Figure 27.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 74 75			
Figure 25. Figure 26. Figure 27. Figure 28.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram	74 74 75 84			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram	74 74 75 84 87			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram Watch Dog Timer Interrupt Timing Waveform	74 74 75 84 87 89			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram Watch Dog Timer Interrupt Timing Waveform	74 75 84 87 89 90			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram Watch Dog Timer Interrupt Timing Waveform Watch Dog Timer Block Diagram	74 75 84 87 89 90 92			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 75 84 87 89 90 92 96			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 75 84 87 89 90 92 96 96			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	 74 74 75 84 87 89 90 92 96 97 			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	 74 74 75 84 87 89 90 92 96 97 98 			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	 74 74 75 84 87 89 90 92 96 97 98 90 			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	 74 74 75 84 87 89 90 92 96 97 98 99 00 			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 74 75 84 87 89 90 92 96 96 97 98 99 00 00			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 40.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 75 84 87 90 92 96 97 98 99 00 00 00			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 74 75 84 87 89 90 92 96 97 98 97 98 90 00 00 01			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 75 84 87 89 90 92 96 97 98 99 00 00 01 05 05			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 42.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 75 84 87 90 92 96 97 98 99 00 01 05 05			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source	74 75 84 87 90 92 96 97 98 90 00 01 05 06 07			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram Watch Dog Timer Interrupt Timing Waveform Watch Dog Timer Block Diagram 8-bit Timer/Counter Mode for Timer 0 8-bit Timer/Counter 0 Example 8-bit Capture Mode for Timer 0 PWM Output Waveforms in PWM Mode for Timer 0 8-bit Capture Mode of Timer 0 16-bit Timer/Counter Mode of Timer 1 16-bit Timer/Counter Mode of Timer 1 16-bit Capture Mode Operation Example 1 16-bit Capture Mode Operation Example 1 16-bit Capture Mode of Timer 1	74 75 84 87 90 92 96 97 98 90 00 01 05 06 07 08			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 42. Figure 43.	Correspondence between Vector Table Address and the Entry Address of ISR Saving/Restore Process Diagram and Sample Source. Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram Watch Dog Timer Interrupt Timing Waveform Watch Dog Timer Block Diagram Watch Dog Timer Block Diagram 8-bit Timer/Counter Mode for Timer 0 8-bit Timer/Counter 0 Example 8-bit Capture Mode for Timer 0 PWM Output Waveforms in PWM Mode for Timer 0 8-bit Capture Mode of Timer 0 1 2 2 3 3 4 4 5 4 6	74 75 84 87 90 92 96 97 98 90 00 01 05 06 07 08			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 43. Figure 43.	Correspondence between Vector Table Address and the Entry Address of ISR	74 74 75 84 87 90 92 96 97 98 90 00 01 05 06 07 08 09			
Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47.	Correspondence between Vector Table Address and the Entry Address of ISR. Saving/Restore Process Diagram and Sample Source. Timing Chart of Interrupt Acceptance and Interrupt Return Instruction Clock Generator Block Diagram Basic Interval Timer Block Diagram Watch Dog Timer Interrupt Timing Waveform Watch Dog Timer Block Diagram Watch Dog Timer Block Diagram Watch Dog Timer Block Diagram Watch Timer Block Diagram &-bit Timer/Counter Mode for Timer 0 8-bit Timer/Counter 0 Example 8-bit Timer/Counter 0 Example 8-bit Capture Mode for Timer 0 PWM Output Waveforms in PWM Mode for Timer 0 8-bit Timer Overflow in Capture Mode 1 Point Timer 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 4 4 5 1 <td>74 74 75 84 87 90 92 96 97 98 90 00 01 05 06 07 08 09</td>	74 74 75 84 87 90 92 96 97 98 90 00 01 05 06 07 08 09			

Figure 49.	16-bit Timer/Counter Mode Operation Example	115		
Figure 50.	16-bit Capture Mode of Timer 2			
Figure 51.	16-bit Capture Mode Operation Example			
Figure 52.	Express Timer Overflow in Capture Mode			
Figure 53.	16-bit PPG Mode of Timer 2			
Figure 54.	16-bit PPG Mode Operation Example			
Figure 55.	16-bit Timer 2 Block Diagram	120		
Figure 56.	16-bit Timer/Counter Mode of Timer 3	124		
Figure 57.	16-bit Timer/Counter Mode Operation Example	124		
Figure 58.	16-bit Capture Mode of Timer 3	125		
Figure 59.	16-bit Capture Mode Operation Example	126		
Figure 60.	Express Timer Overflow in Capture Mode	126		
Figure 61.	16-bit PPG Mode of Timer 3	127		
Figure 62.	16-bit PPG Mode Operation Example	128		
Figure 63.	16-bit Timer 3 Block Diagram	129		
Figure 64.	16-bit Timer/Counter Mode of Timer 4	134		
Figure 65.	16-bit Timer/Counter Mode Operation Example	134		
Figure 66.	16-bit Capture Mode of Timer 4	135		
Figure 67.	16-bit Capture Mode Operation Example	136		
Figure 68.	Express Timer Overflow in Capture Mode	136		
Figure 69.	16-bit PPG Mode of Timer 4	137		
Figure 70.	16-bit PPG Mode Operation Example	138		
Figure 71.	16-bit Timer 4 Block Diagram	139		
Figure 72.	16-bit Timer/Counter Mode of Timer 5	143		
Figure 73.	16-bit Timer/Counter Mode Operation Example	143		
Figure 74.	16-bit Capture Mode of Timer 5	144		
Figure 75.	16-bit Capture Mode Operation Example	145		
Figure 76.	Express Timer Overflow in Capture Mode	145		
Figure 77.	16-bit PPG Mode of Timer 5	146		
Figure 78.	16-bit PPG Mode Operation Example	147		
Figure 79.	16-bit Timer 5 Block Diagram	148		
Figure 80.	Buzzer Driver Block Diagram	151		
Figure 81.	12-bit ADC Block Diagram	154		
Figure 82.	A/D Analog Input Pin with a Capacitor	154		
Figure 83.	A/D Power (AVREF) Pin with a Capacitor	154		
Figure 84.	Control Registers and Align Bits	155		
Figure 85.	ADC Operation Flow Sequence	156		
Figure 86.	USIn USART Block Diagram (n = 0 and 1)	161		
Figure 87.	Clock Generation Block Diagram (USIn)	162		
Figure 88.	Synchronous Mode SCKn Timing (USIn)	163		
Figure 89.	Frame Formats (USIn)	164		
Figure 90.	Asynchronous Start Bit Sampling (USIn)	168		
Figure 91.	Asynchronous Sampling of Data and Parity Bit (USIn)	169		
Figure 92.	Stop Bit Sampling and Next Start Bit Sampling (USIn)	169		
Figure 93.	USIn SPI Clock Formats when CPHAn = 0	171		
Figure 94.	USIn SPI Clock Formats when CPHAn = 1	172		
Figure 95.	USIn SPI Block Diagram (n = 0 and 1)	173		
Figure 96.	Bit Transfer on the I2C-Bus (USIn)	174		
Figure 97.	START and STOP Condition (USIn)	174		
Figure 98.	Data Transfer on the I2C-Bus (USIn)	175		
-				

Figure 99. A	Acknowledge on the I2C-Bus (USIn)	.175
Figure 100.	Clock Synchronization during Arbitration Procedure (USIn)	.176
Figure 101.	Arbitration Procedure of Two Masters (USIn)	.176
Figure 102.	USIn I2C Block Diagram	. 183
Figure 103.	USART2 Block Diagram	. 196
Figure 104.	Clock Generation Block Diagram	. 197
Figure 105.	Synchronous Mode XCK Timing	. 198
Figure 106.	A Frame Format	. 199
Figure 107.	Start Bit Sampling	.202
Figure 108.	Sampling of Data and Parity Bit	.203
Figure 109.	Stop Bit Sampling and Next Start Bit Sampling	203
Figure 110.	SPI Clock Formats when UCPHA = 0	205
Figure 111.	SPI Clock Formats when UCPHA = 1	205
Figure 112.	Example for RTO in USART2	.207
Figure 113.	0% Error Baud Rate Block Diagram	.217
Figure 114.	IDLE Mode Release Timing by an External Interrupt	.219
Figure 115.	STOP Mode Release Timing by External Interrupt	.220
Figure 116.	STOP Mode Release Flow	.221
Figure 117.	Reset Block Diagram	.223
Figure 118.	Fast VDD Rising Time	.224
Figure 119.	Internal RESET Release Timing On Power-Up	.224
Figure 120.	Configuration Timing when Power-on	.225
Figure 121.	Boot Process Waveform	.225
Figure 122.	Timing Diagram after RESET	.227
Figure 123.	Oscillator generating waveform example	.227
Figure 124.	Block Diagram of LVR	.228
Figure 125.	Internal Reset at Power Fail Situation	.228
Figure 126.	Configuration Timing When LVR RESET	.229
Figure 127	I VI Block Diagram	229
Figure 128.	Read Device Internal Checksum (Full Size)	238
Figure 129	Read Device Internal Checksum (User Define Size)	239
Figure 130.	Flash Memory Map	241
Figure 131	Address Configuration of Flash Memory	241
Figure 132	The Sequence of Page Program and Frase of Flash Memory	242
Figure 133	The Sequence of Bulk Frase of Flash Memory	243
Figure 134	ISP Mode	248
Figure 135	Configuration of Extended Stack Pointer	257
Figure 136	OCD 1 and OCD 2 Connector Pin Diagram	259
Figure 137	Debugger (OCD1/OCD2) and Pinouts	260
Figure 138	On Chip Debugging System Block Diagram	261
Figure 130.	Timing Diagram of Debug Mode Entry	261
Figure 140	10 bit Transmission Backet	201
Figure 140.		202
Figure 141.	Data Transfer on Seriel Bue	203
Figure 142.	Dir Hansler on Senai bus	.204
Figure 143.		204
Figure 144.	Acknowledge on Serial Bus	.205
Figure 145.	Clock Synchronization during Walt Procedure	.205
⊢igure 146.	E-PGIVI+ (Single Writer) and Pinouts	266
⊢igure 147.	E-Gang4 and E-Gang6 (for Mass Production)	267
⊢ıgure 148.	Connection of Transmission	.269

Figure	149 PCB Design Guide for	On-Board Programming	270
i igai e	The Beergin Galaction	en Beara i regranning internet i terreteri	

List of tables

Table 1. A96G140/A96G148/A96A148 Device Features and Peripheral Counts	13
Table 2. Normal Pin Description	23
Table 3. SFR Map Summary	39
Table 4. XSFR Map Summary	40
Table 5. SFR Map	41
Table 6. XSFR Map	45
Table 7. Port Register Map	49
Table 8. Interrupt Vector Address Table	70
Table 9. Interrupt Register Map	76
Table 10. Clock Generator Register Map	84
Table 11. Basic Interval Timer Register Map	87
Table 12. Watchdog Timer Register Map	90
Table 13. Watch Timer Register Map	93
Table 14. Timer 0 Operating Mode	95
Table 15. Timer 0 Register Map	101
Table 16. TIMER 1 Operating Modes	104
Table 17. TIMER 1 Register Map	110
Table 18. TIMER 2 Operating Modes	114
Table 19. TIMER 2 Register Map	120
Table 20. TIMER 3 Operating Modes	123
Table 21. TIMER 3 Register Map	129
Table 22. TIMER 4 Operating Modes	133
Table 23. TIMER 4 Register Map	139
Table 24. TIMER 5 Operating Modes	142
Table 25. TIMER 5 Register Map	148
Table 26. Buzzer Frequency at 8MHz	151
Table 27. Buzzer Driver Register Map	152
Table 28. ADC Register Map	156
Table 29. Equations for Calculating USIn Baud Rate Register Setting	162
Table 30. CPOLn Functionality	171
Table 31. USI Register Map	184
Table 32. Example1 of USI0BD and USI1BDSettings for Commonly Used Oscillator Frequencies	193
Table 33. Example2 of USI0BD and USI1BDSettings for Commonly Used Oscillator Frequencies	194
Table 34. Equations for Calculating Baud Rate Register Setting	197
Table 35. CPOL Functionality	204
Table 36. Example Condition of RTO	207
Table 37. USART2 Register Map	208
Table 38. Examples of UBAUD Settings for Commonly Used Oscillator Frequencies	216
Table 39. Peripheral Operation Status during Power Down Mode	218
Table 40. Power Down Operation Register Map	222
Table 41. Hardware Setting Values in Reset State	223
Table 42. Boot Process Description	226
Table 43. Reset Operation Register Map	230
Table 44. Flash Control and Status Register Map	233
Table 45. Program and Erase Time	240
Table 46. Operation Mode	248
Table 47. Mode entrance method for ISP	248
Table 48. Security Policy using Lock Bits	249

Table 49. Information of Core and Debug Emulation Interfaces	253
Table 50. Cores and Debug Interfaces by Series	253
Table 51. Feature Comparison Chart By Series and Core	254
Table 52. OCD Type of Each Series	255
Table 53. Comparison of OCD 1 and OCD 2	255
Table 54. Interrupt Priorities in Groups and Levels	256
Table 55. Debug Feature by Series	258
Table 56. OCD 1 and OCD 2 Pin Description	259
Table 57. OCD Features	
Table 58. Pins for Flash Programming	
Table 59. Instruction Table	271

1 Description

A96G140/A96G148/A96A148 is an advanced CMOS 8-bit microcontroller with 64/32Kbytes of FLASH. This is a powerful microcontroller which provides a highly flexible and cost-effective solution to many embedded control applications.

1.1 Device overview

In this section, features of A96G140/A96G148/A96A148 and peripheral counts are introduced.

Peripherals		Description
Core	CPU	8-bit CISC core (M8051, 2 clocks per cycle)
	Interrupt	Up to 23 peripheral interrupts supported.
		• EINT0 to 7, EINT8, EINT10, EINT11, EINT12 (5)
		• Timer (0/1/2/3/4/5) (6)
		• WDT (1)
		• BIT (1)
		• WT (1)
		USART Rx/Tx (2)
		• USI 2-ch. *Rx/Tx/I2C (6)
		• ADC (1)
		• LVI (1)
Memory	ROM (FLASH)	64/32 Kbytes FLASH with self-read and write capability
	capacity	 In-system programming (ISP)
		Endurance: 30,000times
	IRAM	256Bytes
	XRAM	2304Bytes
Programmable	pulse generation	 Pulse generation (by T1/T2/T3/T4/T5)
		• 8-bit PWM (by T0)
Buzzer		8-bit × 1-ch
Minimum ins	truction execution	125ns (@ 16MHz main clock)
time		 61us (@ 32.768KHz sub clock)
Power down m	ode	STOP mode
		IDLE mode
Conorol Durne		Normal I/O: 46ports
General Purpo		High sink current port: 8ports P3[7:0]

 Table 1. A96G140/A96G148/A96A148 Device Features and Peripheral Counts

Peripherals		Description				
Reset	Power	Reset release level: 1 2\/				
	on reset					
	Low voltage	16 levels detect				
	reset	 1.61/1.68/1.77/1.88/2.00/2.13/2.28/2.46/2.68/2.81/3.06/ 				
		3.21/3.56/3.73/3.91/4.25V				
Low voltage indica	ator	13 levels detect				
		 1.88/2.00/2.13/2.28/2.46/2.68/2.81/3.06/3.21/3.56/3.73/ 3.91/4.25V 				
Watch Timer (WT))	3.91ms/0.25s/0.5s/1s/1min interval at 32.768KHz				
Timer/counter		 Basic interval timer (BIT) 8-bit x 1-ch. 				
		• Watchdog timer (WDT) 8-bit x 1-ch.				
	1	• 8-bit x 1-ch (T0), 16-bit x 5-ch (T1/T2/ T3/T4/T5)				
Communication	USART2	8-bit USART x 1-ch or 8-bit SPI x 1-ch				
function		Receiver timer out (RTO)				
		0% error baud rate				
	USI0/1	• USART + SPI + I2C				
		8-bit USART x 2-ch or 8-bit SPI x 2-ch or I2C x 2-ch				
12-bit A/D convert	er	16 input channels				
Oscillator type		4MHz to 12MHz crystal or ceramic for main clock				
		32.768kHz Crystal for sub clock				
		 HSI 32MHz ±1.5% (TA= 0~ +50°C) 				
		 HSI 32MHz ±2.0% (T_A=-10~ +70°C) 				
Internal RC oscilla	ator	• HSI 32MHz ±2.5% (TA=-40~ +85°C)				
		 HSI 32MHz ±5.0% (T_A=-40~ +105°C) 				
		 LSI 128kHz ±20% (T_A= -40~ +85°C) 				
		 LSI 128kHz ±30% (T_A= -40~ +105°C) 				
		• 1.8V to 5.5V @ 32.768KHz with crystal				
Operating voltage		2.2V to 5.5V @ 4MHz to 10MHz with crystal				
and frequency		 2.4V to 5.5V @ 4MHz to 12MHz with crystal 				
and nequency		 1.8V to 5.5V @ 0.5MHz to 8.0MHz with internal RC 				
		• 2.0V to 5.5V @ 0.5MHz to 16.0MHz with internal RC				
Operating temperature		-40°C to +85°C, -40°C to +105°C				
		Pb-free packages				
		• 48 LQFP 7x7 mm, 48 QFN 6x6 mm				
Package		• 44 MQFP 10x10 mm				
		• 44 LQFP 10x10 mm				
		• 32 LQFP, 32 SOP				
		• 28 SOP, 28 TSSOP				

Table 1. A96G140/A96G148/A96A148 Device Featu	res and Peripheral Counts (continued)

1.2 A96G140/A96G148/A96A148 block diagram

In this section, A96G140/A96G148/A96A148 device with peripherals are described in a block diagram.

Figure 1. A96G140/A96G148/A96A148 Block Diagram

2 Pinouts and pin description

In this chapter, A96G140/A96G148/A96A148 device pinouts and pin descriptions are introduced.

2.1 Pinouts

Figure 2. A96G140/A96G148 48LQFP Pin Assignment

Figure 3. A96G140/A96G148 48QFN Pin Assignment

Figure 5. A96G140/A96G148 44LQFP-1010 Pin Assignment

Figure 6. A96G140/A96G148 32LQFP Pin Assignment

Figure 7. A96G140/A96G148 32SOP Pin Assignment

Figure 8. A96G140/A96G148 28SOP Pin Assignment

2.2 Pin description

Pin no.					PIN	I/O ⁽¹⁾	Description	Remark	
48	44	32 LQFP	32 SOP	28	28 A96A148	Name			
40	37	27	31	27	27	P00*	IOUS	Port 0 bit 0 Input/output	
						EC3	1	Timer 3(Event Capture) input	
						DSDA	IOU	OCD debugger data input/output	Pull-up
						RXD2	I	USART2 data receive/SPI MISO	
39	36	26	30	26	26	P01*	IOUS	Port 0 bit 1 Input/output	
						Т3О	0	Timer 3 interval output	
						PWM3O	0	Timer 3 PWM output	
						DSCL	IOU	OCD debugger clock	Pull-up
						TXD2	0	USART2 data transmit/SPI MOSI	
38	35	25	29	25	25	P02*	IOUS	Port 0 bit 2 Input/output	
						AN0	IA	ADC input ch-0	
						AVREF	Р	A/D converter reference voltage	
						EINT0	1	External interrupt input ch-0	
						T40	0	Timer 4 interval output	
						PWM4O	0	Timer 4 PWM output	
37	34	24	28	24	24	P03*	IOUS	Port 0 bit 3 Input/output	
						AN1	IA	ADC input ch-1	
						EINT1	I	External interrupt input ch-1	
35	33	23	27	23	23	P04*	IOUS	Port 0 bit 4 Input/output	
						AN2	IA	ADC input ch-2	
						EINT2	I	External interrupt input ch-2	
						Т3О	0	Timer 3 interval output	
						PWM3O	0	Timer 3 PWM output	
34	32	22	26	22	22	P05*	IOUS	Port 0 bit 5 Input/output	
						AN3	IA	ADC input ch-3	
						EINT3	I	External interrupt input ch-3	
						EC3	I	Timer 3(Event Capture) input	
33	31	21	25	21	21	P06*	IOUS	Port 0 bit 6 Input/output	
						AN4	IA	ADC input ch-4	
						EINT4	1	External interrupt input ch-4	
						T5O	0	Timer 5 interval output	
						PWM5O	0	Timer 5 PWM output	

Table 2. Normal Pin Description

Pin no.						PIN I/O ⁽¹⁾	I/O ⁽¹⁾	⁽¹⁾ Description	
48	44	32 LQFP	32 SOP	28	28 A96A148	Hame			
32	30	20	24	20	20	P07*	IOUS	Port 0 bit 7 Input/output	
						AN5	IA	ADC input ch-5	
						EINT5	1	External interrupt input ch-5	
23	22	16	20	17	17	P10*	IOUS	Port 1 bit 0 Input/output	
						AN13	IA	ADC input ch-13	
						RXD1	I	USART1 data receive	
						SCL1	IO	I2C1 clock signal	
						MISO1	IO	USART1 SPI MISO	
25	23	17	21	18	18	P11*	IOUS	Port 1 bit 1 Input/output	
						AN12	IA	ADC input ch-12	
						EINT12	1	External interrupt input ch-12	
						T2O	0	Timer 2 interval output	
						PWM2O	0	Timer 2 PWM output	
26	24	18	22	19	19	P12*	IOUS	Port 1 bit 2 Input/output	
						AN11	IA	ADC input ch-11	
						EINT11	I	External interrupt input ch-11	
						T10	0	Timer 1 interval output	
						PWM10	0	Timer 1 PWM output	
27	25	19	23	-	-	P13*	IOUS	Port 1 bit 3 Input/output	
						AN10	IA	ADC input ch-10	
						EC1	I	Timer 1(Event Capture) input	
						BUZO	0	Buzzer output	
28	26	-	-	-	-	P14*	IOUS	Port 1 bit 4 Input/output	
						AN9	IA	ADC input ch-9	
						MOSI2	10	USART2 SPI MOSI	
						TXD2	0	USART2 data transmit	
29	27	-	-	-	-	P15*	IOUS	Port 1 bit 5 Input/output	
						AN8	IA	ADC input ch-8	
						MISO2	Ю	USART2 SPI MISO	
						RXD2	I	USART2 data receive	

Table 2. Normal Pin Description (continued)

		Pin	no.			PIN	I/O ⁽¹⁾	Description	Remark
48	44	32	32	28	28	Name			
		LQFP	SOP		A96A148				
30	28	-	-	-	-	P16*	IOUS	Port 1 bit 6 Input/output	
						AN7	IA	ADC input ch-7	
						EINT7	I	External interrupt input ch-7	
						XCK	10	USART2 clock signal	
31	29	-	-	-	-	P17*	IOUS	Port 1 bit 7 Input/output	
						AN6	IA	ADC input ch-6	
						EINT6	I	External interrupt input ch-6	
						SS2	10	USART2 slave select signal	
22	21	15	19	16	16	P20*	IOUS	Port 2 bit 0 Input/output	
						AN14	IA	ADC input ch-14	
						TXD1	0	USART1 data transmit	
						SDA1	10	I2C1 data signal	
						MOSI1	10	USART1 SPI MOSI	
21	20	14	18	15	-	P21*	IOUS	Port 2 bit 1 Input/output	
						AN15	IA	ADC input ch-15	
						SCK1	IO	USART1 clock signal	
20	19	13	17	-	-	P22*	IOUS	Port 2 bit 2 Input/output	
						SS1	IO	USART1 slave select signal	
19	18	-	-	-	-	P23*	IOU	Port 2 bit 3 Input /output	
18	17	-	-	-	-	P24*	IOU	Port 2 bit 4 Input /output	
17	16	-	-	-	-	P25*	IOU	Port 2 bit 5 Input /output	
16	15	12	16	-	-	P26*	IOU	Port 2 bit 6 Input /output	
15	14	11	15	-	-	P27*	IOU	Port 2 bit 7 Input /output	
14	13	10	14	14	15	P30*	IOUS	Port 3 bit 0 Input /output	
						LED7	0	High sink current ports	
13	12	9	13	13	14	P31*	IOUS	Port 3 bit 1 Input /output	
						LED6	0	High sink current ports	
11	11	8	12	12	13	P32*	IOUS	Port 3 bit 2 Input /output	
						LED5	0	High sink current ports	
10	10	7	11	11	12	P33*	IOUS	Port 3 bit 3 Input /output	
						LED4	0	High sink current ports	
9	9	-	-	-	11	P34*	IOUS	Port 3 bit 4 Input /output	
						LED3	0	High sink current ports	

Table 2. Normal Pin Description (continued)

Pin no.						PIN I/O ⁽¹⁾	Description	Remark	
48	44	32 LQFP	32 SOP	28	28 A96A148	. Name			
8	8	-	-	-	10	P35*	IOUS	Port 3 bit 5 Input /output	
						LED2	0	High sink current ports	
7	7	-	-	-	9	P36*	IOUS	Port 3 bit 6 Input/output	
						LED1	0	High sink current ports	
6	6	-	-	-	8	P37*	IOUS	Port 3 bit 7 Input/output	
						LED0	0	High sink current ports	
2	2	4	8	8	-	P40*	IOUS	Port 4 bit 0 Input/output	
						RXD0	1	USART0 data receive	
						SCL0	Ю	I2C0 clock signal	
						MISO0	Ю	USART0 SPI MISO	
3	3	5	9	9	-	P41*	IOUS	Port 4 bit 1 Input/output	
						TXD0	0	USART0 data transmit	
						SDA0	10	I2C data signal	
						MOSI0	10	USARTO SPI MOSI	
4	4	-	10	10	-	P42*	IOUS	Port 4 bit 2 Input/output	
						SCK0	Ю	USART0 clock signal	
5	5	-	-	-	-	P43*	IOUS	Port 4 bit 3 Input/output	
						SS0	IO	USART0 slave select signal	
12	-	-	-	-	-	P44*	IOUC	Port 4 bit 4 Input/output	
24	-	-	-	-	-	P45*	IOUC	Port 4 bit 5 Input/output	
36	-	-	-	-	-	P46*	IOUC	Port 4 bit 6 Input/output	
48	-	-	-		-	P47*	IOUC	Port 4 bit 7 Input/output	
43	40	30	2	2	2	P50*	IOUS	Port 5 bit 0 Input/output	
						XOUT	0	Main Oscillator Output	
44	41	31	3	3	3	P51*	IOUS	Port 5 bit 1 Input/output	
						XIN	I	Main Oscillator Input	
45	42	32	4	4	4	P52*	IOUS	Port 5 bit 2 Input/output	
						EINT8	1	External interrupt input ch-8	
						EC0	1	Timer 0(Event Capture) input	

Table 2. Normal Pin Description (continued)

Pin no.						PIN Name	I/O ⁽¹⁾	Description	Remark
48	44	32 LQFP	32 SOP	28	28 A96A148				
46	43	1	5	5	5	P53*	IOUS	Port 5 bit 3 Input/output	
						SXIN	Ι	Sub Oscillator Input	
						Т0О	0	Timer 0 interval output	
						PWM00	0	Timer 0 PWM output	
47	44	2	6	6	6	P54*	IOUS	Port 5 bit 4 Input/output	
						SXOUT	0	Sub Oscillator Input	
						EINT10	Ι	External interrupt input ch-10	
1	7	3	7	7	7	P55*	IOUS	Port 5 bit 5 Input/output	
						RESETB	IU	Reset pin	Pull-up
41	38	28	32	28	28	VDD	Р	VDD	
42	39	29	1	1	1	VSS	Р	VSS	

Table 2. Normal Pin Description (continued)

NOTES:

- 1. The P14–P17, P23–P25, P34–P37, and P43-P47 are not in the 32-pin package.
- 2. The P13–P17, P22–P27, P34–P37, and P43-P47 are not in the 28-pin package.
- 3. The P43 is not in the 48-pin package.
- The P55/RESETB pin is configured as one of the P55 and RESETB pin by the "CONFIGURE OPTION."
- 5. If the P00/EC3/DSDA and P01/T3O/DSCL pins are connected to the programmer during power-on reset, the pins are automatically configured as In-system programming pins.
- The P00/EC3/DSDA and P01/T3O/DSCL pins are configured as inputs with internal pull-up resistor only during the reset or power-on reset.
- 7. The P50/XOUT, P51/XIN, P53/SXINT/T0O/PWM0O, and P54/SXOUT/EINT10 pins are configured as a function pin by software control.
- 8. (1) I=Input, O=Output, U=Pull-up, D=Pull-down, S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power
- 9. The * means 'Selected pin function after reset condition

3 Port structures

In this chapter, two port structures are introduced in Figure 10 and Figure 11 regarding general purpose I/O port and external interrupt I/O port respectively.

Figure 10. General Purpose I/O Port

Figure 11. External Interrupt I/O Port

4 Central Processing Unit (CPU)

Central Processing Unit (CPU) of A96G140/A96G148/A96A148 is based on Mentor Graphics M8051EW core, which offers improved code efficiency and high performance.

4.1 Architecture and registers

Figure 12 shows a block diagram of the M8051EW architecture. As shown in the figure, the M8051EW supports both Program Memory and External Data Memory. In addition, it features a Debug Mode in which it can be driven through a dedicated debug interface.

Figure 12. M8051EW Architecture

Main features of the M8051EW are listed below:

• Two clocks per machine cycle architecture:

This allows the device either to run up to six times faster with the same power consumption or to consume one sixth of the power when running at standard speed. All instructions have zero-wait-state execution times that are exactly 1/6 of the time each standard part takes.

• Debug support (OCD and OCD II):

The M8051EW offers a Debug Mode together with a set of dedicated debug signals which can be used by external debug hardware, OCD and OCD II, to provide start/stop program execution in response to both hardware and software triggers, single step operation and program execution tracing.

- Separate Program and External Data Memory interfaces or a single multiplexed interface
 - Up to 1Mbyte of External Data Memory, accessible by selecting one from interfaces
 - Up to 256bytes of Internal Data Memory
 - Up to 1Mbyte of RAM or ROM Program Memory, accessible by selecting one from interfaces
- Support for synchronous and asynchronous Program, External Data and Internal Data Memory
- Wait states support for slow Program and External Data Memory.
- 16-bit Data Memory address is generated through the Data Pointer register (DPTR register).
- 16-bit program counter is capable of addressing up to Flash size in each device.
- A single data pointer, two memory-mapped data pointers, or 2, 4 or 8 banked data pointers
- Support for 2 or 4 level of priority scheme up to 24 maskable Interrupt sources
- External Special Function Register (SFR) are memory mapped into Direct Memory at the address between 80 hex and FF hex.

4.2 Addressing

The M8051EW supports six types of addressing modes as listed below:

- 1. Direct addressing mode: In this mode, the operand is specified by the 8-bit address field. Only internal data and SFRs can be accessed using this mode.
- 2. Indirect addressing mode: In this mode, the operand is specified by addresses contained in a register. Two registers (R0 and R1) from the current bank or the Data Pointer may be used for addressing in this mode. Both internal and external Data Memory may be indirectly addressed.
- 3. Register addressing mode: In this mode, the operand is specified by the top 3 bits of the opcode, which selects one of the current bank of registers. Four banks of registers are available. The current bank is selected by the 3rd and 4th bits of the PSW.
- 4. Register specific addressing mode: In this mode, some instructions only operate on specific registers. This is defined by the opcode. In particular many accumulator operations and some stack pointer operations are defined in this manner.
- 5. Immediate DATA mode: In this mode, Instructions which use Immediate Data are 2 or more bytes long and the Immediate operand is stored in Program Memory as part of the instruction.

Example) MOV A, #100

It loads the Accumulator with the decimal number 100. The same number could be specified in hex digits as 64H.

 Indexed addressing mode: In this mode, only Program Memory can be addressed. It is intended for simple implementation of look-up tables. A 16-bit base register (either the PC or the DPTR) is combined with an offset stored in the accumulator to access data in Program Memory.

4.3 Instruction set

An instruction is a single operation of a processor that is defined by the instruction set. The M8051EW uses the instruction set of 8051 that is broadly classified into five functional categories:

- 1. Arithmetic instructions
- 2. Logical instructions
- 3. Data transfer instructions
- 4. Boolean instructions
- 5. Branching instructions

Major features of the instruction set are listed below. If you need detailed information about the instruction table, please refer to **Appendix** or **Instruction table**:

- Instructions are either 1, 2 or 3 bytes long as listed in the 'Bytes'.
- Each instruction takes either 1, 2 or 4 machine cycles to execute. 1 machine cycle comprises 2 CCLK clock cycles.
- An M8051EW-specific instruction "MOVC @ (DPTR++), A" is provided to enable software to be downloaded into Program Memory where this is implemented as RAM. This instruction can also be used subsequently to modify contents of the Program Memory RAM.
- Arithmetic Instruction: The M8051EW implements ADD, ADDC (Add with Carry), SUBB (Subtract with Borrow), INC (Increment) and DEC (Decrement) functions, which can be used in most addressing modes. There are three accumulator-specific instructions, DA A (Decimal Adjust A), MUL AB (Multiply A by B) and DIV AB (Divide A by B).
- Logical Instruction: The M8051EW implements ANL (AND Logical), ORL (OR Logical), and XRL (Exclusive-OR Logical) functions, which can be used in most addressing modes. There are seven accumulator-specific instructions, CLR A (Clear A), CPL A (Complement A), RL A (Rotate Left A), RLC A (Rotate Left through Carry A), RR A (Rotate Right A), RRC A (Rotate Right through Carry A), and SWAP A (Swap Nibbles of A).
- Internal data memory: Data can be moved from the accumulator to any Internal Data Memory location, from any Internal Data Memory location to the accumulator, and from any Internal Data Memory location to any SFR or other Internal Data Memory location.

- External data memory: Data can be moved between the accumulator and the external memory location in one of two addressing modes. In 8-bit addressing mode, the external location is addressed by either R0 or R1; in 16-bit addressing mode, the location is addressed by the DPTR.
- Unconditional Jumps: Four sorts of unconditional jump instructions are available.
 - Short jumps (SJMP) are relative jumps (limited from -128bytes to +127bytes).
 - Long jumps (LJMP) are absolute 16-bit jumps.
 - Absolute jumps (AJMP) are absolute 11-bit jumps (ex. within a 2Kbyte memory page).
 - Indexed jump, JMP @A+DPTR. This instruction jumps to a location of which address is stored in DPTR register and offset by a value stored in the accumulator.
- Subroutine calls and returns: There are only two sorts of subroutine call, ACALL and LCALL, which are Absolute and Long. Two return instructions are provided, RET and RETI. The latter is for interrupt service routines.
- Conditional jumps: All conditional jump instructions use relative addressing, so they are limited to the range of -128bytes to +127bytes.
- Boolean instructions: The bit-addressable registers in both direct and SFR space may be manipulated using Boolean instructions. Logical functions are available which use the carry flag and an addressable bit as operands. Each addressable bit can be set, cleared or tested in a jump instruction.
- Flag: Certain instructions affect one or more flags that are generated by ALU.

5 Memory organization

A96G140/A96G148/A96A148 addresses two separate address memory spaces:

- Program memory
- Data memory

By means of this logical separation of the memory, 8-bit CPU address can access the Data Memory more rapidly. 16-bit Data Memory address is generated through the DPTR register.

A96G140/A96G148/A96A148 provides on-chip 64Kbytes of the ISP type flash program memory, which readable and writable. Internal data memory (IRAM) is 256bytes and it includes the stack area. External data memory (XRAM) is 2304bytes.

5.1 Program memory

A 16-bit program counter is capable of addressing up to 64Kbytes, and A96G140/A96G148/A96A148 has just 64Kbytes program memory space.

Figure 9 shows a map of the lower part of the program memory.

After reset, CPU begins execution from location 0000H. Each interrupt is assigned a fixed location in the program memory. An interrupt causes the CPU to jump to the corresponding location, where it commences execution of the service routine.

An external interrupt 11, for example, is assigned to location 000BH. If the external interrupt 11 is going to be used, its service routine must begin at location 000BH. If the interrupt is not going to be used, its service location is available as general purpose program memory. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within an interval of 8-bytes.

Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

Figure 13. Program Memory Map

5.2 Data memory

Internal data memory space is divided into three blocks, which are generally referred to as lower 128bytes, upper 128bytes, and SFR space. Internal data memory addresses are always one byte wide, which implies an address space of 256bytes. In fact, the addressing modes for the internal data memory can accommodate up to 384bytes by using a simple trick. Direct addresses higher than 7FH access one memory space, while indirect addresses higher than 7FH access a different memory space. Thus as shown in figure 10, the upper 128bytes and SFR space occupy the same block of addresses, 80H through FFH, although they are physically separate entities.

The lower 128bytes of RAM are present in all 8051 devices as mapped in figure 11. The lowest 32bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

The next 16bytes above the register banks form a block of bit-addressable memory space. The 8051 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the lower 128bytes can be accessed by either direct or indirect addressing. The upper 128bytes of RAM can only be accessed by indirect addressing. These spaces are used for data RAM and stack.

Figure 14. Data Memory Map

Figure 15. Lower 128bytes of RAM

5.3 External data memory

A96G140/A96G148/A96A148 has 2304bytes of XRAM and XSFR. This area has no relation with RAM/FLASH. It can be read and written to through SFR with 8-bit unit.

Figure 16. XDATA Memory Area

5.4 SFR map

5.4.1 SFR map summary

Table 3. SFR Map Summary

_	Reserved	-
	M8051 compatible	
0011		

	00H/8H ⁽¹⁾	01H/9H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
0F8H	IP1	-	-	-	UBAUD	UDATA	-	P5FSR
0F0H	В	USI1ST1	USI1ST2	USI1BD	USI1SDHR	USI1DR	USI1SCLR	USI1SCHR
0E8H	RSTFR	USI1CR1	USI1CR2	USI1CR3	USI1CR4	USI1SAR	P3FSR	P4FSR
0E0H	ACC	USI0ST1	USI0ST2	USI0BD	USI0SDHR	USI0DR	USI0SCLR	USI0SCHR
0D8H	LVRCR	USI0CR1	USI0CR2	USI0CR3	USI0CR4	USI0SAR	P0DB	P15DB
0D0H	PSW	P5IO	P0FSRL	P0FSRH	P1FSRL	P1FSRH	P2FSR	-
0C8H	OSCCR	P4IO	-	UCTRL1	UCTRL2	UCTRL3	-	USTAT
0C0H	EIFLAG0	P3IO	T2CRL	T2CRH	T2ADRL	T2ADRH	T2BDRL	T2BDRH
0B8H	IP	P2I0	T1CRL	T1CRH	T1ADRL	T1ADRH	T1BDRL	T1BDRH
0B0H	P5	P1IO	T0CR	TOCNT	T0DR/ T0CDR	_	-	-
0A8H	IE	IE1	IE2	IE3	P0PU	P1PU	P2PU	P3PU
0A0H	P4	P0IO	EO	P4PU	EIPOL0L	EIPOL0H	EIFLAG1	EIPOL1
98H	P3	-	_	-	ADCCRL	ADCCRH	ADCDRL	ADCDRH
90H	P2	P0OD	P10D	P2OD	P4OD	P5PU	WTCR	BUZCR
88H	P1	WTDR/ WTCNT	SCCR	BITCR	BITCNT	WDTCR	WDTDR/ WDTCNT	BUZDR
80H	P0	SP	DPL	DPH	DPL1	DPH1	LVICR	PCON

NOTE: 00H/8H, these registers are bit-addressable.

	00H/8H ⁽¹⁾	01H/9H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
1078H	—	—	—	—	_	_	—	_
1070H	—	—	—	—	_	_	_	_
1068H	—	—	—	—	_	_	_	_
1060H	_	—	—	—	_	_	_	_
1058H	—	—	—	—	_	_	_	_
1050H	—	—	—	—	_	_	_	_
1048H	—	—	—	—	_	_	_	_
1040H	—	—	—	—	_	_	—	_
1038H	XTFLSR	—	—	—	_	_	—	_
1030H	—	—	—	—	_	_	_	_
1028H	FEARH	FEARM	FEARL	FEDR	FETR	_	_	_
1020H	FEMR	FECR	FESR	FETCR	FEARM1	FEARL1	_	_
1018H	UCTRL4	FPCR	RTOCH	RTOCL	_	_	—	_
1010H	T5CRH	T5CRL	T5ADRH	T5ADRL	T5BDRH	T5BDRL	_	_
1008H	T4CRH	T4CRL	T4ADRH	T4ADRL	T4BDRH	T4BDRL	—	_
1000H	T3CRH	T3CRL	T3ADRH	T3ADRL	T3BDRH	T3BDRL	_	_

Table 4. XSFR Map Summary

5.4.2 SFR map

Table 5. SFR Map											
Address	Function	Symbol	R/W	@R	eset						
				7	6	5	4	3	2	1	0
80H	P0 Data Register	P0	R/W	0	0	0	0	0	0	0	0
81H	Stack Pointer	SP	R/W	0	0	0	0	0	1	1	1
82H	Data Pointer Register Low	DPL	R/W	0	0	0	0	0	0	0	0
83H	Data Pointer Register High	DPH	R/W	0	0	0	0	0	0	0	0
84H	Data Pointer Register Low 1	DPL1	R/W	0	0	0	0	0	0	0	0
85H	Data Pointer Register High 1	DPH1	R/W	0	0	0	0	0	0	0	0
86H	Low Voltage Indicator Control Register	LVICR	R/W	-	-	0	0	0	0	0	0
87H	Power Control Register	PCON	R/W	0	-	-	-	0	0	0	0
88H	P1 Data Register	P1	R/W	0	0	0	0	0	0	0	0
89H	Watch Timer Data Register	WTDR	w	0	1	1	1	1	1	1	1
	Watch Timer Counter Register	WTCNT	R	-	0	0	0	0	0	0	0
8AH	System and Clock Control Register	SCCR	R/W	-	-	-	-	-	-	0	0
8BH	Basic Interval Timer Control Register	BITCR	R/W	0	1	0	0	0	1	0	1
8CH	Basic Interval Timer Counter Register	BITCNT	R	0	0	0	0	0	0	0	0
8DH	Watch Dog Timer Control Register	WDTCR	R/W	0	0	0	-	-	-	0	0
8EH	Watch Dog Timer Data Register	WDTDR	W	1	1	1	1	1	1	1	1
	Watch Dog Timer Counter Register	WDTCNT	R	0	0	0	0	0	0	0	0
8FH	BUZZER Data Register	BUZDR	R/W	1	1	1	1	1	1	1	1
90H	P2 Data Register	P2	R/W	0	0	0	0	0	0	0	0
91H	P0 Open-drain Selection Register	P0OD	R/W	0	0	0	0	0	0	0	0
92H	P1 Open-drain Selection Register	P10D	R/W	0	0	0	0	0	0	0	0
93H	P2 Open-drain Selection Register	P2OD	R/W	0	0	0	0	0	0	0	0
94H	P4 Open-drain Selection Register	P4OD	R/W	0	0	0	0	0	0	0	0
95H	P5 Pull-up Resistor Selection Register	P5PU	R/W	-	-	0	0	0	0	0	0
96H	Watch Timer Control Register	WTCR	R/W	0	-	-	0	0	0	0	0
97H	BUZZER Control Register	BUZCR	R/W	-	-	-	-	-	0	0	0
98H	P3 Data Register	P3	R/W	0	0	0	0	0	0	0	0
9CH	A/D Converter Control Low Register	ADCCRL	R/W	0	0	0	0	0	0	0	0
9DH	A/D Converter Control High Register	ADCCRH	R/W	0	0	0	0	0	0	0	1
9EH	A/D Converter Data Low Register	ADCDRL	R	x	x	x	x	x	x	x	x
9FH	A/D Converter Data High Register	ADCDRH	R	x	x	x	x	x	x	x	x

Address	Function	Symbol	R/W	@Reset							
				7	6	5	4	3	2	1	0
A0H	P4 Data Register	P4	R/W	0	0	0	0	0	0	0	0
A1H	P0 Direction Register	P0IO	R/W	0	0	0	0	0	0	0	0
A2H	Extended Operation Register	EO	R/W	-	-	-	0	-	0	0	0
A3H	P4 Pull-up Resistor Selection Register	P4PU	R/W	0	0	0	0	0	0	0	0
A4H	External Interrupt Polarity 0 Low Register	EIPOL0L	R/W	0	0	0	0	0	0	0	0
A5H	External Interrupt Polarity 0 High Register	EIPOL0H	R/W	0	0	0	0	0	0	0	0
A6H	External Interrupt Flag 1 Register	EIFLAG1	R/W	0	0	Ι	-	0	0	0	0
A7H	External Interrupt Polarity 1 Register	EIPOL1	R/W	0	0	0	0	0	0	0	0
A8H	Interrupt Enable Register	IE	R/W	0	-	0	0	0	0	0	0
A9H	Interrupt Enable Register 1	IE1	R/W	-	-	0	0	0	0	0	0
AAH	Interrupt Enable Register 2	IE2	R/W	-	-	0	0	0	0	0	0
ABH	Interrupt Enable Register 3	IE3	R/W	-	-	0	0	0	0	0	0
ACH	P0 Pull-up Resistor Selection Register	POPU	R/W	0	0	0	0	0	0	0	0
ADH	P1 Pull-up Resistor Selection Register	P1PU	R/W	0	0	0	0	0	0	0	0
AEH	P2 Pull-up Resistor Selection Register	P2PU	R/W	0	0	0	0	0	0	0	0
AFH	P3 Pull-up Resistor Selection Register	P3PU	R/W	0	0	0	0	0	0	0	0
B0H	P5 Data Register	P5	R/W	-	-	0	0	0	0	0	0
B1H	P1 Direction Register	P1IO	R/W	0	0	0	0	0	0	0	0
B2H	Timer 0 Control Register	TOCR	R/W	0	-	0	0	0	0	0	0
B3H	Timer 0 Counter Register	TOCNT	R	0	0	0	0	0	0	0	0
B4H	Timer 0 Data Register	T0DR	R/W	1	1	1	1	1	1	1	1
	Timer 0 Capture Data Register	T0CDR	R	0	0	0	0	0	0	0	0
B8H	Interrupt Priority Register	IP	R/W	-	-	0	0	0	0	0	0
B9H	P2 Direction Register	P2IO	R/W	0	0	0	0	0	0	0	0
BAH	Timer 1 Control Low Register	T1CRL	R/W	0	0	0	0	-	0	0	0
BBH	Timer 1 Counter High Register	T1CRH	R/W	0	-	0	0	-	-	-	0
BCH	Timer 1 A Data Low Register	T1ADRL	R/W	1	1	1	1	1	1	1	1
BDH	Timer 1 A Data High Register	T1ADRH	R/W	1	1	1	1	1	1	1	1
BEH	Timer 1 B Data Low Register	T1BDRL	R/W	1	1	1	1	1	1	1	1
BFH	Timer 1 B Data High Register	T1BDRH	R/W	1	1	1	1	1	1	1	1

Table	5.	SFR	Map	(continued)
Table	υ.	0110	map	(continueu)

Address	Function	Symbol	R/W	@Reset							
				7	6	5	4	3	2	1	0
C0H	External Interrupt Flag 0 Register	EIFLAG0	R/W	0	0	0	0	0	0	0	0
C1H	P3 Direction Register	P3IO	R/W	0	0	0	0	0	0	0	0
C2H	Timer 2 Control Low Register	T2CRL	R/W	0	0	0	0	-	0	-	0
C3H	Timer 2 Control High Register	T2CRH	R/W	0	-	0	0	-	-	-	0
C4H	Timer 2 A Data Low Register	T2ADRL	R/W	1	1	1	1	1	1	1	1
C5H	Timer 2 A Data High Register	T2ADRH	R/W	1	1	1	1	1	1	1	1
C6H	Timer 2 B Data Low Register	T2BDRL	R/W	1	1	1	1	1	1	1	1
C7H	Timer 2 B Data High Register	T2BDRH	R/W	1	1	1	1	1	1	1	1
C8H	Oscillator Control Register	OSCCR	R/W	-	0	1	0	1	0	0	0
C9H	P4 Direction Register	P4IO	R/W	0	0	0	0	0	0	0	0
CBH	USART Control Register 1	UCTRL1	R/W	0	0	0	0	0	0	0	0
ССН	USART Control Register 2	UCTRL2	R/W	0	0	0	0	0	0	0	0
CDH	USART Control Register 3	UCTRL3	R/W	0	0	0	0	-	0	0	0
CFH	USART Status Register	USTAT	R/W	1	0	0	0	0	0	0	0
D0H	Program Status Word Register	PSW	R/W	0	0	0	0	0	0	0	0
D1H	P5 Direction Register	P5IO	R/W	-	-	0	0	0	0	0	0
D2H	P0 Function Selection Low Register	P0FSRL	R/W	0	0	0	0	0	0	0	0
D3H	P0 Function Selection High Register	P0FSRH	R/W	0	0	0	0	0	0	0	0
D4H	P1 Function Selection Low Register	P1FSRL	R/W	0	0	0	0	0	0	0	0
D5H	P1 Function Selection High Register	P1FSRH	R/W	0	0	0	0	0	0	0	0
D6H	P2 Function Selection Register	P2FSR	R/W	-	-	-	0	0	0	0	0
D8H	Low Voltage Reset Control Register	LVRCR	R/W	-	-	-	0	0	0	0	0
D9H	USI0 Control Register 1	USI0CR1	R/W	0	0	0	0	0	0	0	0
DAH	USI0 Control Register 2	USI0CR2	R/W	0	0	0	0	0	0	0	0
DBH	USI0 Control Register 3	USI0CR3	R/W	0	0	0	0	0	0	0	0
DCH	USI0 Control Register 4	USI0CR4	R/W	0	-	-	0	0	-	0	0
DDH	USI0 Slave Address Register	USI0SAR	R/W	0	0	0	0	0	0	0	0
DEH	P0 De-bounce Enable Register	P0DB	R/W	0	0	0	0	0	0	0	0
DFH	P1/P5 De-bounce Enable Register	P15DB	R/W	-	-	0	0	0	0	0	0

Table 5. SFR Map (continued)

Address	Function	Symbol	R/W	@Reset							
				7	6	5	4	3	2	1	0
E0H	Accumulator Register	ACC	R/W	0	0	0	0	0	0	0	0
E1H	USI0 Status Register 1	USI0ST1	R/W	0	0	0	0	-	0	0	0
E2H	USI0 Status Register 2	USI0ST2	R	0	0	0	0	0	0	0	0
E3H	USI0 Baud Rate Generation Register	USI0BD	R/W	1	1	1	1	1	1	1	1
E4H	USI0 SDA Hold Time Register	USI0SHDR	R/W	0	0	0	0	0	0	0	1
E5H	USI0 Data Register	USI0DR	R/W	0	0	0	0	0	0	0	0
E6H	USI0 SCL Low Period Register	USI0SCLR	R/W	0	0	1	1	1	1	1	1
E7H	USI0 SCL High Period Register	USI0SCHR	R/W	0	0	1	1	1	1	1	1
E8H	Reset Flag Register	RSTFR	R/W	1	х	0	0	х	-	-	-
E9H	USI1 Control Register 1	USI1CR1	R/W	0	0	0	0	0	0	0	0
EAH	USI1 Control Register 2	USI1CR2	R/W	0	0	0	0	0	0	0	0
EBH	USI1 Control Register 3	USI1CR3	R/W	0	0	0	0	0	0	0	0
ECH	USI1 Control Register 4	USI1CR4	R/W	0	-	-	0	0	-	0	0
EDH	USI1 Slave Address Register	USI1SAR	R/W	0	0	0	0	0	0	0	0
EEH	Port3 Function Selection Register	P3FSR	R/W	0	0	0	0	0	0	0	0
EFH	P4 Function Selection Register	P4FSR	R/W	-	-	-	-	0	0	0	0
F0H	B Register	В	R/W	0	0	0	0	0	0	0	0
F1H	USI1 Status Register 1	USI1ST1	R/W	0	0	0	0	-	0	0	0
F2H	USI1 Status Register 2	USI1ST2	R	0	0	0	0	0	0	0	0
F3H	USI1 Baud Rate Generation Register	USI1BD	R/W	1	1	1	1	1	1	1	1
F4H	USI1 SDA Hold Time Register	USI1SHDR	R/W	0	0	0	0	0	0	0	1
F5H	USI1 Data Register	USI1DR	R/W	0	0	0	0	0	0	0	0
F6H	USI1 SCL Low Period Register	USI1SCLR	R/W	0	0	1	1	1	1	1	1
F7H	USI1 SCL High Period Register	USI1SCHR	R/W	0	0	1	1	1	1	1	1
F8H	Interrupt Priority Register 1	IP1	R/W	-	-	0	0	0	0	0	0
FCH	USART Baud Rate Generation Register	UBAUD	R/W	1	1	1	1	1	1	1	1
FDH	USART Data Register	UDATA	R/W	0	0	0	0	0	0	0	0
FFH	P5 Function Selection Register	P5FSR	R/W	0	0	0	0	0	0	0	0

Address	Function	Symbol	R/W	@Reset							
				7	6	5	4	3	2	1	0
1000H	Timer 3 Control High Register	T3CRH	R/W	0	-	0	0	-	-	-	0
1001H	Timer 3 Control Low Register	T3CRL	R/W	0	0	0	0	-	0	-	0
1002H	Timer 3 A Data High Register	T3ADRH	R/W	1	1	1	1	1	1	1	1
1003H	Timer 3 A Data Low Register	T3ADRL	R/W	1	1	1	1	1	1	1	1
1004H	Timer 3 B Data High Register	T3BDRH	R/W	1	1	1	1	1	1	1	1
1005H	Timer 3 B Data Low Register	T3BDRL	R/W	1	1	1	1	1	1	1	1
1006H	Reserved	-	-								
1007H	Reserved	-	-								
1008H	Timer 4 Control High Register	T4CRH	R/W	0	-	0	0	-	-	-	0
1009H	Timer 4 Control Low Register	T4CRL	R/W	0	0	0	0	-	0	-	0
100AH	Timer 4 A Data High Register	T4ADRH	R/W	1	1	1	1	1	1	1	1
100BH	Timer 4 A Data Low Register	T4ADRL	R/W	1	1	1	1	1	1	1	1
100CH	Timer 4 B Data High Register	T4BDRH	R/W	1	1	1	1	1	1	1	1
100DH	Timer 4 B Data Low Register	T4BDRL	R/W	1	1	1	1	1	1	1	1
100EH	Reserved	-	-								
100FH	Reserved	-	-	-	_						
1010H	Timer 5 Control High Register	T5CRH	R/W	0	0 – 0			-	-	-	0
1011H	Timer 5 Control Low Register	T5CRL	R/W	0	0	0	0	-	0	-	0
1012H	Timer 5 A Data High Register	T5ADRH	R/W	1	1	1	1	1	1	1	1
1013H	Timer 5 A Data Low Register	T5ADRL	R/W	1	1	1	1	1	1	1	1
1014H	Timer 5 B Data High Register	T5BDRH	R/W	1	1	1	1	1	1	1	1
1015H	Timer 5 B Data Low Register	T5BDRL	R/W	1	1	1	1	1	1	1	1
1018H	USART Control Register 4	UCTRL4	R/W	-	-	-	0	0	0	0	0
1019H	USART Floating Point Counter	FPCR	R/W	0	0	0	0	0	0	0	0
101AH	Receiver Time Out Counter High Register	RTOCH	R	0	0	0	0	0	0	0	0
101BH	Receiver Time Out Counter Low Register	RTOCL	R	0	0	0	0	0	0	0	0
1020H	Flash Mode Register	FEMR	R/W	0	-	0	0	0	0	0	0
1021H	Flash Control Register	FECR	R/W	0	-	0	0	0	0	1	1
1022H	Flash Status Register	FESR	R/W	1	-	-	-	0	0	0	0
1023H	Flash Time Control Register	FETCR	R/W	0	0	0	0	0	0	0	0
1024H	Flash Address Middle Register 1	FEARM1	R/W	0	0	0	0	0	0	0	0
1025H	Flash Address Low Register 1	FEARL1	R/W	0	0	0	0	0	0	0	0
1028H	Flash Address High Register	FEARH	R/W	0	0	0	0	0	0	0	0
1029H	Flash Address Middle Register	FEARM	R/W	0	0	0	0	0	0	0	0
102AH	Flash Address Low Register	FEARL	R/W	0	0	0	0	0	0	0	0
1038H	Main Crystal OSC Filter Selection Register	XTFLSR	R/W	-	-	0	0	0	0	0	0
107FH	Reserved	_	_	-							

Table 6. XSFR Map

5.4.3 Compiler compatible SFR

ACC (Accumulator Register): E0H 7 6 5 4 3 2 1 0 ACC R/W R/W R/W R/W R/W R/W R/W R/W Initial value: 00H ACC Accumulator B (B Register): F0H 7 6 5 3 2 0 4 1 В RW R/W RW RW RW RW RW RW Initial value: 00H В **B** Register SP (Stack Pointer): 81H 7 6 5 4 3 2 1 0 SP RW RW RW RW RW RW RW RW Initial value: 07H SP Stack Pointer DPL (Data Pointer Register Low): 82H 7 6 4 0 5 3 2 1 DPL RW RW R/W RW RW RW RW RW Initial value: 00H DPL Data Pointer Low DPH (Data Pointer Register High): 83H 7 6 5 4 3 2 1 0 DPH R/W RW R/W R/W RW RW R/W RW Initial value: 00H DPH Data Pointer High DPL1 (Data Pointer Register Low 1): 84H 7 6 5 4 0 3 2 1 DPL1 RW RW RW RW R/W RW R/W RW Initial value: 00H DPL1 Data Pointer Low 1

DPH1 (Data Pointer Register High 1): 85H

PSW (Program Status Word Register): D0H

7	6	5	4	3	2	1	0					
CY	AC	F0	RS1	RS0	F1	Р						
RW	RW	RW	RW	RW RW RW I								
	Initial value: 0											
	CY	Carry Flag										
	AC	A	Auxiliary Carry Flag									
	F0	C	General Purpos	se User-Defina	able Flag							
	RS1	F	Register Bank	Select bit 1								
	RS0	F	Register Bank	Select bit 0								
	OV	C	Overflow Flag									
	F1	ι	User-Definable Flag									
	Ρ	F	Parity Flag. Set/Cleared by hardware each instruction cycle to indicate an odd/even number of '1' bits in the accumulator									

EO (Extended Operation Register): A2H

7	6	5	4		3	2	1	0				
-	-	-	TRAP_	EN	-	DPSEL2	DPSEL1	DPSEL0				
-	-	-	RW	1	-	RW	RW	RW				
							Initial	value: 00H				
	TRAP_EN Select the Instruction (Keep always '0').											
		()	Select M	OVC @(D	PTR++), A						
		1		Select Sc	oftware TF	RAP Instruction	า					
	DPSE	EL[2:0] S	Select Ba	nked Data	Pointer F	Register						
		[DPSEL2	DPSEL1	SPSELC	Description						
		()	0	0	DPTR0						
		()	0	1	DPTR1						
		F	Reserved									

6 I/O ports

A96G140/A96G148/A96A148 has ten groups of I/O ports (P0 ~ P5). Each port can be easily configured by software as I/O pin, internal pull up and open-drain pin to meet various system configurations and design requirements. P0 includes a function that can generate interrupt signals according to state of a pin.

6.1 Port register

6.1.1 Data register (Px)

Data register is a bidirectional I/O port. If ports are configured as output ports, data can be written to the corresponding bit of the Px. If ports are configured as input ports, the data can be read from the corresponding bit of the Px.

6.1.2 Direction register (PxIO)

Each I/O pin can be independently used as an input or an output through the PxIO register. Bits cleared in this register will make the corresponding pin ofPx to input mode. Set bits of this register will make the pin to output mode. Almost bits are cleared by a system reset, but some bits are set by a system reset.

6.1.3 Pull-up register selection register (PxPU)

The on-chip pull-up resistor can be connected to I/O ports individually with a pull-up resistor selection register (PxPU). The pull-up register selection controls the pull-up resister enable/disable of each port. When the corresponding bit is 1, the pull-up resister of the pin is enabled. When 0, the pull-up resister is disabled. All bits are cleared by a system reset.

6.1.4 Open-drain Selection Register (PxOD)

There are internally open-drain selection registers (PxOD) for P0 ~ P4 and a bit for P5. The open-drain selection register controls the open-drain enable/disable of each port. Almost ports become push-pull by a system reset, but some ports become open-drain by a system reset.

6.1.5 De-bounce Enable Register (PxDB)

P0[7:2], P1[2:1], P1[7:6], P52, P54 support debounce function. Debounce clocks of each ports are fx/1, fx/4, and fx/4096.

6.1.6 Port Function Selection Register (PxFSR)

These registers define alternative functions of ports. Please remember that these registers should be set properly for alternative port function. A reset clears the PxFSR register to '00H', which makes all pins to normal I/O ports.

Name	Address	Direction	Default	Description			
P0	80H	R/W	00H	P0 Data Register			
P0IO	A1H	R/W	00H	P0 Direction Register			
P0PU	ACH	R/W	00H	P0 Pull-up Resistor Selection Register			
P0OD	91H	R/W	00H	P0 Open-drain Selection Register			
P0DB	DEH	R/W	00H	P0 De-bounce Enable Register			
P0FSRH	D3H	R/W	00H	P0 Function Selection High Register			
P0FSRL	D2H	R/W	00H	P0 Function Selection Low Register			
P1	88H	R/W	00H	P1 Data Register			
P1IO	B1H	R/W	00H	P1 Direction Register			
P1PU	ADH	R/W	00H	P1 Pull-up Resistor Selection Register			
P10D	92H	R/W	00H	P1 Open-drain Selection Register			
P15DB	DFH	R/W	00H	P1/P5Debounce Enable Register			
P1FSRH	D5H	R/W	00H	P1 Function Selection High Register			
P1FSRL	D4H	R/W	00H	P1 Function Selection Low Register			
P2	90H	R/W	00H	P2 Data Register			
P2IO	B9H	R/W	00H	P2 Direction Register			
P2PU	AEH	R/W	00H	P2 Pull-up Resistor Selection Register			
P2OD	93H	R/W	00H	P2 Open-drain Selection Register			
P2FSR	D6H	R/W	00H	P2 Function Selection Register			
P3	98H	R/W	00H	P3 Data Register			
P3IO	C1H	R/W	00H	P3 Direction Register			
P3PU	AFH	R/W	00H	P3 Pull-up Resistor Selection Register			
P3FSR	EEH	R/W	00H	P3 Function Selection Register			
P4	A0H	R/W	00H	P4 Data Register			
P4IO	C9H	R/W	00H	P4 Direction Register			
P4PU	A3H	R/W	00H	P4 Pull-up Resistor Selection Register			
P4OD	94H	R/W	00H	P4 Open-drain Selection Register			
P4FSR	EFH	R/W	00H	P4 Function Selection Register			
P5	B0H	R/W	00H	P5 Data Register			
P5IO	D1H	R/W	00H	P5 Direction Register			
P5PU	95H	R/W	00H	P5 Pull-up Resistor Selection Register			
P5FSR	FFH	R/W	00H	P5 Function Selection Register			

Table 7. Port Register Map

6.2 P0 port

6.2.1 P0 port description

P0 is an 8-bit I/O port. P0 control registers consist of P0 data register (P0), P0 direction register (P0IO), debounce enable register (P0DB), P0 pull-up resistor selection register (P0PU), and P0 open-drain selection register (P0OD). Refer to the port function selection registers for the P0 function selection.

6.2.2 **Register description for P0**

P0 (P0 Data Register): 80H

7	6	5	4	3	2	1	0
P07	P06	P05	P04	P03	P02	P01	P00
R/W	R/W						
						Initial	value: 00H

P0[7:0] I/O Data

P0IO (P0 Direction Register): A1H

7	6	5	4	3	2	1	0
P07IO	P06IO	P05IO	P04IO	P03IO	P02IO	P01IO	P00IO
R/W							

Initial value: 00H

P0IO[7:0]

0 Input

P0 Data I/O Direction.

- Output 1
- NOTES:

1. EC3 (P00)/EINT0 to EINT5 function possible when input.

2. EC3 (P05) possible when P0FSR[3:2] = '01'.

P0PU (P0 Pull-up Resistor Selection Register): ACH

7	6	5	4	3	2	1	0
P07PU	P06PU	P05PU	P04PU	P03PU	P02PU	P01PU	P00PU
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
	POPL	J[7:0] (Configure Pull-	up Resistor of	P0 Port		
		() Disabl	le			
		1	Enable	e			

Enable

7	6	5	4	3	2	1	0
P07OD	P06OD	P05OD	P04OD	P03OD	P02OD	P01OD	P00OD
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Initial	value: 00H
	POOD	D[7:0] (Configure Oper	n-drain of P0 F	Port		
		() Push-	pull output			
		1	l Open-	drain output			

P0OD (P0 Open-drain Selection Register): 91H

P0DB (P0 De-bounce Enable Register): DEH

7	6	5	4	3	2	1	0		
DBCLK1	DBCLK0	P07DB	P06DB	P05DB	P04DB	P03DB	P02DB		
RW	RW	RW	RW	RW	RW	RW	RW		
						Initial	value: 00H		
	DBCI	LK[1:0]	Configure De-bounce Clock of Port						
			DBCLK1 DBC	CLK0 Descrip	tion				
			0 0	fx/1					
			0 1	fx/4					
			1 0	fx/4096					
			1 1	LSIRC ((128KHz)				
	P070)B	Configure De-l	pounce of P07	Port				
			0 Disa	able					
			1 Enable						
	P06DB			pounce of P06	Port				
			0 Disa	able					
			1 Ena	ble					
	P05E	ЪВ	Configure De-I	pounce of P05	Port				
			0 Disa	able					
			1 Ena	ble					
	P04C)B	Configure De-l	bounce of P04	Port				
			0 Disa	able					
		_	1 Ena	ble	_				
	P03D)В	Configure De-l	oounce of P03I	Port				
			0 Disa	able					
		-	1 Ena	ble	5 /				
	P02D)R	B Configure De-bounce of P02 Port						
			U Disa	able					
			1 Ena	ble					

NOTES:

- 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.
- 2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.
- 3. The port de-bounce is automatically disabled at stop mode and recovered after stop mode release.

7	6	5	4	3		2	1	0
POFSRH7	POFSRH6	P0FSRH5	POFSRH	14 POFSI	RH3	POFSRH2	POFSRH1	POFSRH0
R/W	RW	RW	RW	RV	V	RW	RW	R/W
							Initial	value: 00H
	P0FS	SRH[7:6]	P07 Function	on Select				
			P0FSRH7	P0FSRH6	Des	cription		
			0	0	I/O F	Port (EINT5 fur	nction possible	e when input)
			0	1	rese	erved		
			1	0	AN5	5 Function		
			1	1	Res	erved		
	P0FS	SRH[5:4]	P06 Function	on Select				
			P0FSRH5	P0FSRH4	Des	cription		
			0	0	I/O F	Port (EINT4 fur	nction possible	e when input)
			0	1	rese	erved		
			1	0	AN4	Function		
			1	1	PWI	M5O/T5O Fund	ction	
	P0FS	SRH[3:2]	P05 Function	on Select				
			P0FSRH3	P0FSRH2	Des	cription		
			0	0	I/O F	Port (EINT3 fur	nction possible	e when input)
			0	1	EC3	B Function		
			1	0	AN3	B Function		
			1	1	rese	erved		
	P0FS	SRH[1:0]	P04 Function	on Select				
			P0FSRH1	P0FSRH0	Des	cription		
			0	0	I/O F	Port (EINT2 fur	nction possible	e when input)
			0	1	Res	erved		
			1	0	AN2	2 Function		
			1	1	PWI	M3O/T3O Fund	ction	

P0FSRH (Port 0 Function Selection High Register): D3H

7	6	5	4		3		2	1	0		
P0FSRL7	P0FSRL6	P0FSRL5	POFSRL	4	POFSF	RL3	P0FSRL2	P0FSRL1	P0FSRL0		
R/W	RW	RW	RW		RM	/	RW	RW	RW		
					Initial	value: 00H					
	P0FS	SRL[7:6]	P03 Function	on Se	elect						
			P0FSRL7	P0F	SRL6	Des	cription				
			0	0		I/O I	Port(EINT1 fun	ction possible	when input)		
			0	1		reserved					
			1	0		AN1 Function					
			1 1 reserved								
	P0FS	SRL[5:4]	P02 Function	elect							
			P0FSRL5 P0		SRL4	Des	cription				
				0 0			I/O Port(EINT0 function possible when input)				
				0 1			REF Function				
			1	0		ANC) Function				
			1	1		T4O)/PWM40 Fun	ction			
	P0FS	SRL[3:2]	P01 Function Select								
			P0FSRL3	P0F	SRL2	Des	cription				
			0	0		I/O I	Port				
			0	1		T3O)/PWM3O Fun	ction			
			1	0		rese	erved				
			1	1		TXC	02 Function				
	P0FS	SRL[1:0]	P00 Function	on Se	elect						
			P0FSRL1	P0F	SRL0	Des	cription				
			0	0		I/O I	Port(EC3 funct	ion possible w	hen input)		
			0	1		rese	erved				
			1	0		reserved					
			1	1		RXE	D2 Function				

P0FSRL (Port 0 Function Selection Low Register): D2H

6.3 P1 port

6.3.1 P1 port description

P1 is an 8-bit I/O port. P1 control registers consist of P1 data register (P1), P1 direction register (P1IO), debounce enable register (P15DB), P1 pull-up resistor selection register (P1PU), andP1 open-drain selection register (P1OD). Refer to the port function selection registers for the P1 function selection.

6.3.2 Register description for P1

7 2 6 5 4 3 1 0 P17 P16 P15 P14 P13 P12 P11 P10 RW RW RW RW RW RW RW RW Initial value: 00H

P1[7:0] I/O Data

P1IO (P1 Direction Register): B1H

P1 (P1 Data Register): 88H

7	6	5	4	3	2	1	0		
P1710	P16IO	P1510	P1410	P1310	P1210	P1110	P101O		
RW	RW	RW	RW	RW	RW	RW	RW		
						Initial	value: 00H		
	P1IO	[7:0] F	P1 Data I/O Direction						
		C) Input						
		1	l Outpu	t					
		1	NOTE: EIN whe	T6/EINT7/EIN en input	T11/EINT12/E	C1 function	possible		

P1PU (P1 Pull-up Resistor Selection Register): ADH

7	6	5	4	3	2	1	0
P17PU	P16PU	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
	P1PL	J[7:0] (Configure Pull-	up Resistor of	P1 Port		
		() Disabl	е			
		1	Enable	Э			

7	6	5	4	3	2	1	0	
P17OD	P16OD	P15OD	P140D	P13OD	P120D	P110D	P10OD	
R/W	RW	RW	RW	RW	RW	RW	RW	
						Initial	value: 00H	
	P10[D[7:0] (Configure Ope	n-drain of P1 F	Port			
		C) Push-	pull output				
	1 Open-drain output							

P1OD (P1 Open-drain Selection Register): 92H

P15DB (P1/P5 De-bounce Enable Register): DFH

7	6	5	4	3	2	1	0		
-	-	P54DB	P52DB	P17DB	P16DB	P12DB	P11DB		
-	_	RW	RW	RW	RW	RW	RW		
						Initial	value: 00H		
	P540	DB (Configure De-b	ounce of P54	Port				
		() Disa	ble					
		1	Ena	ble					
	P520	DB (Configure De-bounce of P52 Port						
		() Disa	ble					
		1	Ena	ble					
	P170	DB (Configure De-b	ounce of P17	Port				
		() Disa	ble					
		1	Ena	ble					
	P16E	DB (Configure De-b	ounce of P16	Port				
		() Disa	ble					
		1	Ena	ble					
	P120	OB (Configure De-b	ounce of P12	Port				
		() Disa	ble					
		1	Ena	ble					
	P110	OB (Configure De-b	ounce of P11	Port				
		() Disa	ble					
		1	Ena	ble					

NOTES:

- 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.
- 2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.
- 3. The port de-bounce is automatically disabled at stop mode and recovered after stop mode release.
- 4. Refer to the port 0 de-bounce enable register (P0DB) for the de-bounce clock of port 1 and port 5.

	7	6	5	4	3		2	1		0	
ſ	P1FSRH7	P1FSRH6	P1FSRH5	P1FSRH	4 P1FSF	RH3 P1I	FSRH2	P1FSF	RH1	P1FS	RH0
	RW	RW	RW	RW	RW	/	RW	RM	/	RM	N
									Initial	value: C)0H
		P1FS	RH[7:6]	P17 Function	on Select						
				P1FSRH7	P1FSRH6	Descriptio	on				
				0	0	I/O Port(input)	EINT6	function	poss	ible wł	nen
				0	1	reserved					
				1	0	AN6 Fund	ction				
				1	1	SS2 Func	tion				
		P1FS	RH[5:4]	P16 Function	on Select						
				P1FSRH5	P1FSRH4	Descriptio	on				
				0	0	I/O Port input)	(EINT7	function	poss	ible wh	ıen
				0	1	reserved					
				1	0	AN7 Fund	ction				
				1	1	XCK Fund	ction				
		P1FS	RH[3:2]	P15 Function	on Select						
				P1FSRH3	P1FSRH2	Descriptio	on				
				0	0	I/O Port					
				0	1	reserved					
				1	0	AN8 Fund	ction				
				1	1	MISO2/R	XD2				
		P1FS	SRH[1:0]	P14 Function	on Select						
				P1FSRH1	P1FSRH0	Descriptio	n				
				U	0	I/O Port					
				U	1	reserved					
				1	U		TION				
				1	1	MOSI2/17	KD2				

P1FSRH (Port 1 Function Selection High Register): D5H

7	6	5	4		3		2	1	0
P1FSRL7	P1FSRL6	P1FSRL5	P1FSRL	4	P1FSF	rl3	P1FSRL2	P1FSRL1	P1FSRL0
RW	RW	RW	RW		RM	/	RW	RW	RW
								Initial	value: 00H
	P1FS	RL[7:6]	P13 Function	on Se	elect				
			P1FSRL7	P1F	SRL6	Des	cription		
			0	0 I/O Port(EC1 function post				ion possible w	hen input)
			0	1		rese	erved		
			1	0		AN1	0 Function		
			1	1		BUZ	20 Function		
	P1FSRL[5:4]		P12 Function	on Se	elect				
			P1FSRL5	P1F	SRL4	Des	cription		
			0	0		I/O Port(EINT11 function possible input)			sible when
			0	1		rese	erved		
			1	0		AN1	1 Function		
			1	1		T10	PWM10 Fun	ction	
	P1FS	RL[3:2]	P11 Function Select						
			P1FSRL3	P1F	SRL2	Des	cription		
			0	0		I/O inpu	Port(EINT12 it)	function poss	sible when
			0	1		rese	erved		
			1	0		AN1	2 Function		
			1	1		T2O)/PWM2O Fun	ction	
	P1FSRL[1:0]		P10 Function	on Se	elect				
			P1FSRL1	P1F	SRL0	Des	cription		
			0	0		I/O F	Port		
			0	1		rese	erved		
			1	0		AN1	3 Function		
			1	1		RXE	D1/SCL1/MISC	01 Function	

P1FSRL (Port 1 Function Selection Low Register): D4H

6.4 P2 port

6.4.1 P2 port description

P2 is an 8-bit I/O port. P2 control registers consist of P2 data register (P2), P2 direction register (P2IO), P2 pull-up resistor selection register (P2PU) and P2 open-drain selection register (P2OD).Refer to the port function selection registers for the P2 function selection.

6.4.2 Register description for P2

P2 (P2 Data Register): 90H

7	6	5	4	3	2	1	0
P27	P26	P25	P24	P23	P22	P21	P20
R/W	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
		-					

P2[7:0] I/O Data

P2IO (P2 Direction Register): B9H

7	6	5	4	3	2	1	0
P2710	P2610	P2510	P2410	P2310	P2210	P2110	P2010
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
	P2IO	[7:0] F	P2 Data I/O Dir	rection			
		C) Input				
		1	Outpu	t			

P2PU (P2 Pull-up Resistor Selection Register): AEH

7	6	5	4	3	2	1	0
P27PU	P26PU	P25PU	P24PU	P23PU	P22PU	P21PU	P20PU
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
	P2PL	J[7:0] C	[7:0] Configure Pull-up Resistor of P2 Port				
		C) Disabl	е			
		1	Enable	Э			

P2OD (P2 Open-drain Selection Register): 93H

7	6	5	4	3	2	1	0
P27OD	P26OD	P25OD	P24OD	P230D	P220D	P21OD	P200D
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
	P2OI	D[7:0] C	Configure Oper	n-drain of P2 F	Port		
		C	0 Push-pull output				
		1	Open-	drain output			

7	6	5	4	3	2	1	0		
-	-	-	P2FSR4	P2FSR3	P2FSR2	P2FSR1	P2FSR0		
-	-	-	RW	RW	RW	RW	RW		
						Initial	value: 00H		
	P2FS	SR4 I	P22 Function S	Select					
		() I/O	Port					
			1 SS1	Function					
	P2FS	SR[3:2] I	P21 Function S	Select					
		F	P2FSR3 P2	2FSR2 Des	cription				
		(0 0	I/O	Port				
		() 1	rese	erved				
			1 0	AN	AN15 Function				
			1 1	SCI	<1 Function				
	P2FS	SR[1:0] I	P20 Function S	Select					
		I	P2FSR1 P2	2FSR0 Des	cription				
		(0 0	I/O	Port				
		() 1	rese	erved				
			1 0	AN	14 Function				
			1 1	TXE	01/SDA1/MOS	11 Function			

P2FSR (Port 2 Function Selection Register): D6H

6.5 P3 port

6.5.1 P3 port description

P3 is an 8-bit I/O port. P3 control registers consist of P3 data register (P3), P3 direction register (P3IO) and P3 pull-up resistor selection register (P3PU). Refer to the port function selection registers for the P3 function selection.

6.5.2 Register description for P3

P3 (P3 Data Register): 98H

7	6	5	4	3	2	1	0
P37	P36	P35	P34	P33	P32	P31	P30
RW	RW						
						Initial	value: 00H

P3[7:0] I/O Data

P3IO (P3 Direction Register): C1H

7	6	5	4	3	2	1	0
P3710	P3610	P3510	P3410	P3310	P3210	P311O	P3010
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H
	P3IO[7:0] P3 Data I/O Direction						
		C) Input				

1 Output

P3PU (P3 Pull-up Resistor Selection Register): AFH

7	6	5	4	3	2	1	0
P37PU	P36PU	P35PU	P34PU	P33PU	P32PU	P31PU	P30PU
RW	RW						
						Initial	value: 00H

P3PU[7:0] Configure Pull-up Resistor of P3 Port

0 Disable

1 Enable

7	6	5	4	3	2	1	0
P3FSR7	P3FSR6	P3FSR5	P3FSR4	P3FSR3	P3FSR2	P3FSR1	P3FSR0
RW	RW	RW	R/W	RW	R/W	RW	R/W
						Initial	value: 00H
	P3FS	SR7 I	P37 Function s	elect			
		(D I/OF	Port			
	Doc			0 Function			
	P3F5	iria l	P36 Function S	Select			
		(Port 1 Eurotion			
	P3ES		D35 Function s				
	1010	(Port			
			1 LED	2 Function			
	P3FSR4		P34 Function S	Select			
		(D I/O F	Port			
			1 LED	3 Function			
	P3FS	SR3 I	P33 Function select				
		() I/O F	Port			
			1 LED	4 Function			
	P3FS	SR2 I	P32 Function S	Select			
		(Port			
	DOF		1 LED	5 Function			
	P3FS	SR1 I	P31 Function s	elect			
		(- UIL 6 Euroction			
	P3ES		P30 Function S				
	1010	(Port			
			1 LED	7 Function			

P3FSR (Port 3 Function Selection Register): EEH

NOTES:

- LEDn function is used for high current driving and it can drive about 180mA (Typ.) @VDD=5V, VOL= 1.5V.
- 2. When using the LEDn function for high current driving, you must disable the LEDn function before making changes to set the port output to high or low.
- 3. When using multiple ports for high current functions, it is not recommended to enable or disable multiple ports simultaneously. Because instantaneous changes in high current can cause MCU malfunction, you must control the interval between enabling or disabling each port for high current functions so that the intervals are sequential and not overlapping.

Example1) How to change the Output (L \rightarrow H) when using P30 port as LED7:

P3FSR &= ~(1<<0);	<pre>// LED7 Function is disabled.</pre>
Delay 2us	<pre>// Stabilization time</pre>
P30 = 1;	// P30 Output is set to High.
P3FSR = (1<<0);	<pre>// LED7 Function is enabled.</pre>

Example2) How to change the Output (H \rightarrow L) when using P30 port as LED7:

P3FSR &= ~(1<	:<0); //	LED7	Function	is d	disabled.
Delay 2us	11	Stabi	ilization	time	e
P30 = 0;	11	P30 (Output is	set	to Low.
P3FSR = (1<<	:0); //	LED7	Function	is e	enabled.

2

P42IO

R/W

6.6 P4 port

6.6.1 P4 port description

P4 is a 4-bit I/O port. P4 control registers consist of P4 data register (P4), P4 direction register (P4IO), P4 pull-up resistor selection register (P4PU) and P4 open-drain selection register (P4OD). Refer to the port function selection registers for the P4 function selection.

6.6.2 Register description for P4

-							
7	6	5	4	3	2	1	0
P47	P46	P45	P44	P43	P42	P41	P40
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Initial	value: 00H
	P4[7:	0] I	/O Data				

3

P43IO

R/W

P4 (P4 Data Register): A0H

P4IO (P4 Direction Register): C9H

6

P46IO

R/W

7

P47IO

R/W

P4IO[7:0] P4 Data I/O Direction

0 Input

1 Output

4

P44IO

R/W

P4PU (P4 Pull-up Resistor Selection Register): A3H

5

P45IO

R/W

	7	6	5	4 3 2		2	1	0
ſ	P47PU	P46PU	P45PU	P44PU	P43PU	P42PU	P41PU	P40PU
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							Initial	value: 00H
		P4PL	J[3:0] (Configure Pull-	up Resistor of	P4 Port		
			() Disabl	е			

Enable

1

P4OD (P4 Open-drain Selection Register): 94H

7	6	5	4	3	2	1	0
P47OD	P46OD	P45OD	P44OD	P43OD	P42OD	P410D	P40OD
R/W	R/W						
						Initial	value: 00H

P4OD[3:0]

- Configure Open-drain of P4 Port 0 Push-pull output
- 1 Open-drain output

0

P40IO

R/W

Initial value: 00H

1

P41IO

R/W

7	6	5	4	3	2	1	0		
-	-	-	-	P4FSR3	P4FSR2	P4FSR1	P4FSR0		
-	-	-	-	RW	RW	RW	RW		
			Initial value: 00F						
	P4FS	R3 P4	P43 Function Select						
		0	I/O F	Port					
		1	1 SS0 Function						
	P4FS	R2 P4	P42 Function Select						
	0 I/O Port								
		1	SCK	0 Function					
	P4FS	R1 P4	41 Function Se	elect					
		0	I/O F	Port					
		1	1 TXD0/SDA0/MOSI0 Function						
	P4FS	R0 P4	40 Function Se	elect					
		0	I/O F	Port					
		1	RXD	0/SCL0/MISC	0 Function				

P4FSR (Port 4 Function Selection Register): EFH

6.7 P5 port

6.7.1 P5 port description

P5 is a 6-bit I/O port. P5 control registers consist of P5 data register (P5), P5 direction register (P5IO) and P5 pull-up resistor selection register (P5PU). Refer to the port function selection registers for the P5 function selection.

6.7.2 Register description for P5

P5 (P5 Data Register): B0H

7	6	5	4	3	2	1	0
-	-	P55	P54	P53	P52	P51	P50
-	-	RW	RW	RW	RW	RW	RW
						Initial	value: 00H

P5[5:0] I/O Data

P5IO (P5 Direction Register): D1H

7	6	5	4	3	2	1	0
-	-	P5510	P5410	P5310	P5210	P5110	P5010
-	-	RW	RW	RW	RW	RW	RW

Initial value: 00H

P5IO[5:0]

P5 Data I/O Direction 0 Input

1 Output

NOTE: EC0/EINT8/EINT10 function possible when input

P5PU (P5 Pull-up Resistor Selection Register): 95H

7	6	5	4	3	2	1	0
-	-	P55PU	P54PU	P53PU	P52PU	P51PU	P50PU
-	-	RW	RW	RW	RW	RW	RW
						Initial	value: 00H

Configure Pull-up Resistor of P5 Port

P5PU[5:0]

0 Disable

1 Enable

7	6	5	4			3	2	1	0
P5FSR7	P5FSR6	P5FSR5	P5FS	R4	P	5FSR3	P5FSR2	P5FSR1	P5FSR0
RW	RW	RW	RW RW RW				RW	RW	RW
								Initial	value: 00H
	P5FSR	[7:6]	P54 Fund	tion S	elect				
			P5FSR7	P5F	SR6	Descrip	tion		
			0	0		I/O Port	(EINT10 funct	ion possible w	hen input)
			0	1		SXOUT	Function		
			1	0		reserve	d		
			1	1		reserve	d		
	P5FSR	[5:4]	P53 Fund	tion S	elect				
			P5FSR5	P5F	SR4	Descrip	tion		
			0	0		I/O Port			
			0	1		SXIN Fu	unction		
			1	0		T00/PV	M00 Function	n	
			1	1		reserve	d		
	P5FSR	[3:2]	P51 Fund	tion S	elect				
			P5FSR3	P5F	SR2	Descrip	tion		
			0	0		I/O Port			
			0	1		XIN Fur	nction		
			1	0		reserve	d		
			1	1		reserve	d		
	P5FSR	[1:0]	P50 Func	tion S	elect				
			P5FSR1	P5F	SR0	Descrip	tion		
			0	0		I/O Port			
			0	1		XOUT F	unction		
			1	0		reserve	d		
			1	1		reserve	d		

P5FSR (Port 5 Function Selection Register): FFH

NOTES:

- 1. Refer to the configure option for the P55/RESETB.
- 2. EC0/EINT8/EINT10 function possible when input

7 Interrupt controller

A96G140/A96G148/A96A148 supports up to 23 interrupt sources. The interrupts have separate enable register bits associated with them, allowing software control. In addition, they have four levels of priority assigned to themselves.

A non-maskable interrupt source is always enabled with a higher priority than any other interrupt sources, and is not controllable by software.

Interrupt controller of A96G140/A96G148/A96A148 has following features:

- Request receive from the 23 interrupt sources
- 6 groups of priority
- 4 levels of priority
- Multi Interrupt possibility
- A request of higher priority level is served first, when multiple requests of different priority levels are received simultaneously.
- Each interrupt source can be controlled by EA bit and each IEx bit
- Interrupt latency of 3 to 9 machine cycles in single interrupt system

A non-maskable interrupt is always enabled, while maskable interrupts are enabled through four pairs of interrupt enable registers (IE, IE1, IE2, and IE3). Each bit of IE, IE1, IE2, IE3 register individually enables/disables the corresponding interrupt source. Overall control is provided by bit 7 of IE (EA). When EA is set to '0', all interrupts are disabled: when EA is set to '1', interrupts are individually enabled or disabled through the other bits of the interrupt enable registers. The EA bit is always cleared to '0' jumping to an interrupt service vector and set to '1' executing the [RETI] instruction. The A96G140/A96G148/A96A148 supports a four-level priority scheme. Each maskable interrupt is individually assigned to one of four priority levels according to IP and IP1.

Default interrupt mode is level-trigger mode basically, but if needed, it is possible to change to edgetrigger mode. Figure 13 shows the Interrupt Group Priority Level that is available for sharing interrupt priority. Priority of a group is set by two bits of interrupt priority registers (one bit from IP, another one from IP1). Interrupt service routine serves higher priority interrupt first. If two requests of different priority levels are received simultaneously, the request of higher priority level is served prior to the lower one.

Group	Highest			Lowest	
0 (Bit0)	Interrupt 0	Interrupt 6	Interrupt 12	Interrupt 18	Highest
1 (Bit1)	Interrupt 1	Interrupt 7	Interrupt 13	Interrupt 19	
2 (Bit2)	Interrupt 2	Interrupt 8	Interrupt 14	Interrupt 20	
3 (Bit3)	Interrupt 3	Interrupt 9	Interrupt 15	Interrupt 21	
4 (Bit4)	Interrupt 4	Interrupt 10	Interrupt 16	Interrupt 22	
5 (Bit5)	Interrupt 5	Interrupt 11	Interrupt 17	Interrupt 23	Lowest

Figure 17. Interrupt Group Priority Level

7.1 External interrupt

External interrupts on INT0, INT1, INT5, INT6 and INT11 pins receive various interrupt requests depending on the external interrupt polarity 0 high/low register (EIPOL0H/L) and external interrupt polarity 1 register (EIPOL1) as shown in figure 14.

Each external interrupt source has enable/disable bits.

External interrupt flag 0 register (EIFLAG0) and external interrupt flag 1 register 1 (EIFLAG1) indicate status of external interrupts.

Figure 18. External Interrupt Description

7.2 Block diagram

Figure 19. Interrupt Controller Block Diagram

7.3 Interrupt vector table

Interrupt controller of A96G140/A96G148/A96A148 supports 24 interrupt sources as shown in table 8. When interrupt is served, long call instruction (LCALL) is executed and program counter jumps to the vector address. All interrupt requests have their own priority order.

Interrupt Source	Symbol	Interrupt	Priority	Mask	Vector
		Enable Bit			Address
Hardware Reset	RESETB	—	0	Non-Maskable	0000H
External Interrupt 10	INT0	IE.0	1	Maskable	0003H
External Interrupt 11	INT1	IE.1	2	Maskable	000BH
USI1 I2C Interrupt	INT2	IE.2	3	Maskable	0013H
USI1 Rx Interrupt	INT3	IE.3	4	Maskable	001BH
USI1 Tx Interrupt	INT4	IE.4	5	Maskable	0023H
External Interrupt 0 - 7	INT5	IE.5	6	Maskable	002BH
External Interrupt 8	INT6	IE1.0	7	Maskable	0033H
USART2 TX Interrupt	INT7	IE1.1	8	Maskable	003BH
USI0 I2C Interrupt	INT8	IE1.2	9	Maskable	0043H
USI0 Rx Interrupt	INT9	IE1.3	10	Maskable	004BH
USI0 Tx Interrupt	INT10	IE1.4	11	Maskable	0053H
External Interrupt 12	INT11	IE1.5	12	Maskable	005BH
T0 Overflow Interrupt	INT12	IE2.0	13	Maskable	0063H
T0 Match Interrupt	INT13	IE2.1	14	Maskable	006BH
T1 Match Interrupt	INT14	IE2.2	15	Maskable	0073H
T2 Match Interrupt	INT15	IE2.3	16	Maskable	007BH
T3 Match Interrupt	INT16	IE2.4	17	Maskable	0083H
T4/T5 Match Interrupt	INT17	IE2.5	18	Maskable	008BH
ADC Interrupt	INT18	IE3.0	19	Maskable	0093H
USART2 RX Interrupt	INT19	IE3.1	20	Maskable	009BH
WT Interrupt	INT20	IE3.2	21	Maskable	00A3H
WDT Interrupt	INT21	IE3.3	22	Maskable	00ABH
BIT Interrupt	INT22	IE3.4	23	Maskable	00B3H
LVI Interrupt	INT23	IE3.5	24	Maskable	00BBH

Table 8. Interrupt Vector Address Table

For maskable interrupt execution, EA bit must set '1' and specific interrupt must be enabled by writing '1' to associated bit in the IEx. If an interrupt request is received, the specific interrupt request flag is set to '1'.

And it remains '1' until CPU accepts interrupt. If the interrupt is served, the interrupt request flag will be cleared automatically.

7.4 Interrupt sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to '0' by a reset or an instruction. Interrupt acceptance always generates at last cycle of the instruction. So instead of fetching the current instruction, CPU executes internally LCALL instruction and saves the PC at stack.

For the interrupt service routine, the interrupt controller gives the address of LJMP instruction to CPU. Since the end of the execution of current instruction, it needs 3 to 9 machine cycles to go to the interrupt service routine. The interrupt service task is terminated by the interrupt return instruction [RETI]. Once an interrupt request is generated, the following process is performed.

Figure 20. Interrupt Sequence Flow

7.5 Effective timing after controlling interrupt bit

Case A in figure 17 shows the effective time after controlling Interrupt Enable Registers (IE, IE1, IE2, and IE3).

Figure 21. Effective Timing of Interrupt Enable Register

Case B in figure 18 shows the effective time after controlling Interrupt Flag Registers.

Figure 22. Effective Timing of Interrupt Flag Register

7.6 Multi-interrupt

If two requests of different priority levels are received simultaneously, the request of higher priority level is served first. If more than one interrupt request are received, the interrupt polling sequence determines which request is served first by hardware. However, for special features, multi-interrupt processing can be executed by software.

Figure 23. Effective Timing of Multi-Interrupt

Figure 19 shows an example of multi-interrupt processing. While INT1 is served, INT0 which has higher priority than INT1 is occurred. Then INT0 is served immediately and then the remaining part of INT1 service routine is executed. If the priority level of INT0 is same or lower than INT1, INT0 will be served after the INT1 service has completed.

An interrupt service routine may be only interrupted by an interrupt of higher priority and, if two interrupts of different priority occur at the same time, the higher level interrupt will be served first. An interrupt cannot be interrupted by another interrupt of the same or a lower priority level. If two interrupts of the same priority level occur simultaneously, the service order for those interrupts is determined by the scan order.

7.7 Interrupt enable accept timing

Figure 24. Interrupt Response Timing Diagram

7.8 Interrupt service routine address

Figure 25. Correspondence between Vector Table Address and the Entry Address of ISR

7.9 Saving/restore general purpose registers

Figure 26. Saving/Restore Process Diagram and Sample Source

7.10 Interrupt timing

Figure 27. Timing Chart of Interrupt Acceptance and Interrupt Return Instruction

Interrupt sources are sampled at the last cycle of a command. If an interrupt source is detected the lower 8-bit of interrupt vector (INT_VEC) is decided. M8051W core makes interrupt acknowledge at the first cycle of a command, and executes long call to jump to interrupt service routine.

7.11 Interrupt register overview

7.11.1 Interrupt Enable Register (IE, IE1, IE2, and IE3)

Interrupt enable register consists of global interrupt control bit (EA) and peripheral interrupt control bits. Total 24 peripherals are able to control interrupt.

7.11.2 Interrupt Priority Register (IP and IP1)

24 interrupts are divided into 6 groups which have 4 interrupt sources respectively. A group can be assigned to 4 levels of interrupt priority using interrupt priority register. Level 3 is the highest priority, while level 0 is the lowest priority.

After a reset, IP and IP1 are cleared to '00H'. If interrupts have the same priority level, lower number interrupt is served first.

7.11.3 External Interrupt Flag Register (EIFLAG0 and EIFLAG1)

External Interrupt Flag 0 Register (EIFLAG0) and External Interrupt Flag 1 Register (EIFLAG1) are set to '1' when the external interrupt generating condition is satisfied. These flags are cleared when the interrupt service routine is executed. Alternatively, these flags can be cleared by writing '0' on to themselves.

7.11.4 External Interrupt Polarity Register (EIPOL0L, EIPOL0H, and EIPOL1)

External Interrupt Polarity0 high/low Register (EIPOL0H/L) and External Interrupt Polarity1 Register (EIPOL1) determines an edge type from rising edge, falling edge, and both edges of interrupt. Initially, default value is no interrupt at any edge.

<i>i</i> .ii.o Register map

	······									
Name	Address	Direction	Default	Description						
IE	A8H	R/W	00H	Interrupt Enable Register						
IE1	A9H	R/W	00H	Interrupt Enable Register 1						
IE2	AAH	R/W	00H	Interrupt Enable Register 2						
IE3	ABH	R/W	00H	Interrupt Enable Register 3						
IP	B8H	R/W	00H	Interrupt PriorityRegister						
IP1	F8H	R/W	00H	Interrupt PriorityRegister 1						
EIFLAG0	C0H	R/W	00H	External Interrupt Flag 0 Register						
EIPOL0L	A4H	R/W	00H	External Interrupt Polarity 0 Low Register						
EIPOL0H	A5H	R/W	00H	External Interrupt Polarity 0 High Register						
EIFLAG1	A6H	R/W	00H	External Interrupt Flag 1 Register						
EIPOL1	A7H	R/W	00H	External Interrupt Polarity 1 Register						

Table 9. Interrupt Register Map

7. Interrupt controller

A96G140/A96G148/A96A148 User's manual

7.11.6 Interrupt register description

IE (Interrupt Enable Register): A8H

7	6	5	4	3	2	1	0			
EA	-	INT5E	INT4E	INT3E	INT2E	INT1E	INTOE			
R/W	-	RW	RW	RW	RW	RW	RW			
						Initial	value: 00H			
	EA		Enable or Disa	able All Interrup	ot bits					
			0 All Int	errupt disable						
			1 All Int	errupt enable						
	INTS	5E	Enable or Disable External Interrupt 0 ~ 7 (EINT0 ~ EINT7)							
			0 Disab	le						
			1 Enabl	e						
	INT4	4E	Enable or Disa	able USI1 Tx In	nterrupt					
			0 Disab	le						
			1 Enabl	е						
	INTS	3E	Enable or Disa	able USI1 Rx Ir	nterrupt					
			0 Disab	le						
			1 Enabl	e						
	INT2	2E	Enable or Disa	able USI1 I2C I	nterrupt					
			0 Disab	le						
			1 Enabl	e						
	INT1	1E	Enable or Disa	able External Ir	nterrupt 11(EIN	IT11)				
			0 Disab	le						
			1 Enabl	e						
	INT	DE	Enable or Disa	able External Ir	nterrupt 10 (EI	NT10)				
			0 Disab	le						
			1 Enabl	е						

IE1 (Interrupt Enable Register 1): A9H

7	6	5	4	3	2	1	0			
—	-	INT11E	INT10E	INT9E	INT8E	INT7E	INT6E			
-	-	RW	RW	RW	RW	RW	RW			
						Initial	value: 00H			
	INT11E		Enable or Disable External Interrupt 12 (EINT12)							
			0 Disab	le						
			1 Enabl	e						
	INT1	10E	Enable or Disable USI0Tx Interrupt							
			0 Disable							
			1 Enabl	e						
	INT9E			able USI0 Rx Ir	nterrupt					
				le						
			1 Enabl	e						
	INT8	3E	Enable or Disable USI0 I2C Interrupt							
			0 Disab	le						
			1 Enabl	e						
	INT7	7E	Enable or Disable USART2 TX Interrupt							
			0 Disab	le						
			1 Enabl	e						
	INT	3E	Enable or Disa	able External Ir	nterrupt 8 (EIN	T8)				
			0 Disab	le						
			1 Enabl	е						

IE2 (Interrupt Enable Register 2): AAH

7	6	5	4	3	2	1	0				
-	-	INT17E	INT16E	INT15E	INT14E	INT13E	INT12E				
-	-	RW	RW	RW	RW	RW	RW				
						Initial	value: 00H				
	INT17E			Enable or Disable Timer 4/5 Match Interrupt							
			0 Disab	le							
			1 Enabl	е							
	INT1	16E	Enable or Disable Timer 3 Match Interrupt								
			0 Disable								
			1 Enabl	e							
	INT15E			able Timer 2 M	atch Interrupt						
			0 Disab	le							
			1 Enabl	e							
	INT	14E	Enable or Disable Timer 1 Match Interrupt								
			0 Disab	le							
			1 Enabl	e							
	INT	13E	Enable or Disable Timer 0 I Match Interrupt								
			0 Disab	le							
			1 Enabl	e							
	INT	12E	Enable or Disa	able Timer 0 O	verflow Interru	ot					
			0 Disab	le							
			1 Enabl	e							

7	6	5	4	3	2	1	0		
-	-	INT23E	INT22E	INT21E	INT20E	INT19E	INT18E		
-	-	RW	RW	RW	RW	RW	RW		
						Initial	value: 00H		
INT23E			Enable or Disa						
			0 Disab	le					
			1 Enabl	е					
	INT2	22E	Enable or Disable BIT Interrupt						
			0 Disab	le					
			1 Enabl	е					
INT21E			Enable or Disa	ble WDT Inter	rupt				
			0 Disab	le					
			1 Enabl	е					
	INT2	20E	Enable or Disable WT Interrupt						
			0 Disab	le					
			1 Enabl	е					
	INT1	19E	Enable or Disa	ble USART2 F	RX Interrupt				
			0 Disab	le					
			1 Enabl	е					
	INT1	18E	Enable or Disa	ble ADC Inter	rupt				
			0 Disab	le					
			1 Enabl	е					

IE3 (Interrupt Enable Register 3): ABH

IP (Interrupt Priority Register): B8H

– – IP5 IP4 IP3 IP2 IP1	
	IP0
– – RW RW RW RW RW	RW

Initial value: 00H

IP1 (Interrupt Priority Register 1): F8H

7	6	5	4	1	3	2	1	0	
-	-	IP15	IP	14	IP13	IP12	IP11	IP10	
-	-	RW	R	W	RW	RW	RW	RW	
							Initial	value: 00H	
IP[5:0], IP1[5:0] Select Interrupt Group Priority									
			IP1x IPx Description						
			0	0	level 0 (lowest)				
			0	1	level 1				
			1	0	level 2				
			1	1	level 3 (hig	hest)			

7	6	5	4	3	2	1	0		
FLAG7	FLAG6	FLAG5	FLAG4	FLAG3	FLAG2	FLAG1	FLAG0		
RW	RW	RW	RW	RW	RW	RW	RW		
Initial value: 00H									
EIFLAG0[7:0] When an External Interrupt 0-7 is occurred, the flag bec flag is cleared only by writing '0' to the bit. So, the flac cleared by software.							nes '1'.The should be		
	0 External Interrupt0 ~ 7 not occurred								
			1 Exter	nal Interrupt0 -	~ 7 occurred				

EIFLAG0 (External Interrupt Flag0 Register): C0H

EIPOL0H (External Interrupt Polarity 0High Register): A5H

7	6	5	4	3	2	1	0		
PC	DL7	P	POL6 POL5)L5	PO	L4		
RW	RW	RW	RW	RW RW		RW	RW		
						Initial	value: 00H		
	EIPO	OL0H[7:0]	External interrupt (EINT7, EINT6, EINT5, EINT4) polarity selection						
			POLn[1:0]	Description					
			0 0	No interrupt at any edge					
			0 1	Interrupt on rising edge					
			1 0 Interrupt on falling edge						
			1 Interrupt on both of rising and falling edge				ge		
			Where n =4, 5, 6 and 7						

EIPOL0L (External Interrupt Polarity 0Low Register): A4H

7	6	5	4	3	2	1	0			
PC	DL3	PC	L2 POL1		POL2		POL1)LO	
RW	RW	RW	RW	RW	RW	RW	RW			
						Initial	value: 00H			
	EIP	OL0L[7:0]	External interrupt (EINT0, EINT1, EINT2, EINT3) polarity selection							
			POLn[1:0]	Description						
			0 0	No interrupt at any edge						
			0 1	Interrupt or	n rising edge					
			1 0	Interrupt on falling edge						
			1 1	Interrupt on both of rising and falling edge						
			Where n =0, 1, 2 and 3							

7	6	5	4	3	2	1	0		
TOOVIFR	TOIFR	-	-	FLAG12	FLAG11	FLAG10	FLAG8		
RW	RW	-	-	RW	RW	RW	RW		
			Initial value						
T0OVIFR			When T0 over bit, write'0' to Writing "1" has	flow interrupt c this bit or au no effect.	occurs, this bit utomatically cl	becomes '1'. F ear by INT_A	For clearing CK signal.		
			0 T0 overflow Interrupt no generation						
			1 T0 ov	erflow Interrup	t generation				
	TOIF	R	When T0 interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal. Writing "1" has no effect.						
			0 T0 Int	errupt no gene	neration				
			1 T0 Interrupt generation						
	EIFL	_AG1[3:0]	When an External Interrupt (EINT8, EINT10-EINT12) is occurred, the flag becomes '1'. The flag is cleared by writing '0' to the bit or automatically cleared by INT_ACK signal. Writing "1" has no effect.						
			0 Extern	nal Interrupt no	ot occurred				
			1 Exteri	nal Interrupt oc	curred				

EIFLAG1 (External Interrupt Flag 1 Register): A6H

EIPOL1 (External Interrupt Polarity 1 Register): A7H

7	6	5	4	3	2	1	0		
PO	L12	PC)L11	PO	L10	PC	POL8		
RW	RW	RW	RW	RW	RW	RW	RW		
						Initial	value: 00H		
	EIPO	DL1[7:0]	External interre	upt (EINT8,EIN	IT10,EINT11,E	EINT12) polarit	y selection		
			POLn[1:0]	Description					
			0 0	No interrupt at any edge					
			0 1	Interrupt or	Interrupt on rising edge				
			1 0	Interrupt on falling edge					
			1 1	Interrupt on both of rising and falling edge					
			Where n =8, 1	0, 11 and 12					

8 Clock generator

As shown in figure 24, a clock generator produces basic clock pulses which provide a system clock for CPU and peripheral hardware.

It contains main/sub-frequency clock oscillator. The main/sub clock can operate easily by attaching a crystal between the XIN/SXIN and XOUT/SXOUT pin, respectively. The main/sub clock can be also obtained from the external oscillator. For this, it is necessary to place external clock signal into the XIN/SXIN pin and open XOUT/SXOUT pin.

Default system clock is 1MHz INT-RC Oscillator. To stabilize the system internally, 128KHz LOW INT-RC oscillator on POR is recommended.

Oscillators in the clock generator are introduced in the followings:

- Calibrated high internal RC oscillator (32MHz)
 - HSIRC OSC/2 (16MHz, default system clock)
 - HSIRC OSC/4 (8MHz)
 - HSIRC OSC/8 (4MHz)
 - HSIRC OSC/16 (2MHz)
 - HSIRC OSC/32 (1MHz)
 - HSIRC OSC/64 (0.5MHz)
- Main crystal oscillator (4~12MHz)
- Sub-crystal Oscillator (32.768kHz)
- Internal LSIRC oscillator (128kHz)

8.1 Clock generator block diagram

In this section, a clock generator of A96G140/A96G148/A96A148 is described in a block diagram.

Figure 28. Clock Generator Block Diagram

8.2 Register map

Table 10. Clock Generator Register Map

Name	Address	Direction	Default	Description
SCCR	8AH	R/W	00H	System and Clock Control Register
OSCCR	C8H	R/W	28H	Oscillator Control Register
XTFLSR	1038H	R/W	00H	Main Crystal OSC Filter Selection Register

8.3 Register description

SCCR (System and Clock Control Register): 8AH

7	6	5	4		3 2		1	0	
-	_	-	_	-	_	-	SCLK1	SCLK0	
-	-	-	-		-	-	RW	RW	
							Initial	value: 00H	
	SCL	K [1:0]	System	Clock S	election Bit				
			SCLK1	SCLK0	Description	n			
			0	0	Internal 32	MHz RC OSC	(fhsirc) for sys	tem clock	
			0	1	External M	ain OSC (f _{XIN})	for system clo	ck	
			1 0		External Sub OSC (fsub) for system clock				
			1	1	Internal 12	8kHz RC OSC	(fLSIRC) for sys	tem clock	

OSCCR (Oscillator Control Register): C8H

7	6	5	4	ļ	3	2	1	0			
-	LSIRCE	IRCS2	IRC	XS1	IRCS0	HSIRCE	XCLKE	SCLKE			
_	RW	RW	R/	W	RW	RW	RW	RW			
							Initial	value: 28H			
	LSIF	RCE	Control the Operation of the Low Frequency (128kHz) internal RC Oscillator at Stop mode								
			0	Disable	e operatior	n of LSIRC OSC					
			1	Enable	operation	of LSIRC OSC					
	IRCS	S[2:0]	Internal	RC Osc	cillator Pos	t-divider Selectio	n				
			IRCS2	IRCS1	IRCS0	Description					
			0	0	0	INT-RC/64 (0.5	/IHz)				
			0	0	1	INT-RC/32 (1Mł	Hz)				
			0	1	0	INT-RC/16 (2MI	Hz)				
			0	1	1	INT-RC/8 (4MH	z)				
			1	0	0	INT-RC/4 (8MH	z)				
			1	0	1	INT-RC/2 (16M	Hz)				
			1	1	0	Test only					
			Other V	alues		reserved					
	HSIF	RCE	Control Oscillat	the Ope or	eration of	the High Freque	ncy (32MHz) I	nternal RC			
			0	Enable	operation	of HSIRC OSC					
			1	Disable	e operatior	n of HSIRC OSC					
	XCL	KE	Control	the Ope	eration of th	he External Main	Oscillator				
			0	Disable	e operatior	n of X-TAL					
			1	Enable	operation	of X-TAL					
	SCLKE		Control	the Ope	eration of th	he External Sub (Oscillator				
			0 Disable operation of SX-TAL								
			1	Enable	operation	of SX-TAL					

7	6	5		4		3		2	1	0
NFSEL1	NFSEL0	MX_FIL	_DIS	MX_IS	SEL1	MX_IS	EL0	SUB_FIL_DIS	SUB_ISEL1	SUB_ISEL0
R/W	R/W	R/\	N	R/	W	R/V	V	R/W	R/W	R/W
	NFSEL[1	:0]	Noise	e Filter Selective Option				Initial	value: 00H	
			NFSE	L1	NFSE	LO	Desc	ription		
			0		0		18ns	(Default, 12MI	Hz)	
			0		1		22ns	(12MHz)		
			1		0		26ns	(8MHz)		
			1		1		30ns	(4MHz)		
	MX_FIL_	DIS	Main	X-TAL	noise d	canceller	selec	tion.		
			0		Using	noise fi	ter			
			1		Bypas	ss noise	filter			
	MX_ISEI	[1:0]	Curre	nt sele	ctive op	otion for	MX-T/	AL		
			MX_I	SEL1	MX_I	SEL0	Desc	ription		
			0		0		HIGH	l (~12M)		
			0		1		MID-	HIGH (8~12M)		
			1		0		MID-	LOW (4~8M)		
			1		1		LOW	(~4M)		
	SUB_FIL	_DIS	SUB	X-TAL ı	noise c	anceller	select	tion.		
			0		Using	noise fi	ter			
			1		Bypas	ss noise	filter			
	SUB_ISE	EL[1:0]	Curre	nt sele	ctive op	otion for	SUB-	TAL		
			SUB_	ISEL1	SUB_	ISEL0	Desc	ription		
			0		0		Low			
			0		1		Mid-L	_OW		
			1		0		Mid-H	High		
			1		1		High	(When using fa	ast Start-up)	

XTFLSR (Main Crystal OSC Filter Selection Register): 1038H

NOTE: The External Main Oscillator Range (XRNS) should be changed while the system clock is selected as IRC

9 Basic interval timer

A96G140/A96G148/A96A148 has a free running 8-bit Basic Interval Timer (BIT). BIT generates the time base for watchdog timer counting, and provides a basic interval timer interrupt (BITIFR).

BIT of A96G140/A96G148/A96A148 features the followings:

- During Power On, BIT gives a stable clock generation time
- On exiting Stop mode, BIT gives a stable clock generation time
- As a timer, BIT generates a timer interrupt.

9.1 BIT block diagram

In this section, basic interval timer of A96G140/A96G148/A96A148 is described in a block diagram.

Figure 29. Basic Interval Timer Block Diagram

9.2 BIT register map

Table 11. Basic Interval Timer Register Map

Name	Address	Direction	Default	Description
BITCNT	8CH	R	00H	Basic Interval Timer Counter Register
BITCR	8BH	R/W	45H	Basic Interval Timer Control Register

9.3 BIT register description

BITCNT (Basic Interval Timer Counter Register): 8CH

7	6	5		4	3	2	1	0			
BITCNT7	BITCNT6	BITCN	T5 BN	ICNT4	BITCNT3	BITCNT2	BITCNT1	BITCNT0			
R	R	R		R	R	R	R	R			
							Initial	value: 00H			
	BIT	CNT[7:0]	BIT C	ounter							
ITCR (Basi	ic Interval Ti	imer Cor	ntrol Regi	ister): 8I	ΒН						
7	6	5		4	3	2	1	0			
BITIFR	BITCK2	BITCK	1 B	TCK0	BCLR	BCK2	BCK1	BCK0			
RW	RW	RW		RW	RW	RW	RW	RW			
							Initial	value: 45H			
	BITI	FR	When Bl to this bit	T Interrup	t occurs, this lear by INT	s bit becomes '1 ACK signal. Wr	'. For clearing iting "1" has no	bit, write '0' o effect.			
			0	BIT inte	rrupt no gen	eration	0				
			1	BIT inte	rrupt genera	ation					
	BIT	Select BI	T clock so	ource							
			BITCK2	BITCK1	BITCK0	Description					
			0	0	0	fx/4096					
			0	0	1	fx/1024					
			0	1	0	fx/128					
			0	1	1	fx/16					
			1	Other V	alues	LSIRC/32 (Det	fault)				
	BCL	R	If this bit	If this bit is written to '1', BIT Counter is cleared to '0'							
			0	Free Ru	unning						
			1	Clear C	ounter						
	BCk	<[2:0]	Select BI		w period						
			BCK2	BCK1	BCK0	Description (fx	=LSIRC 128k)				
			0	0	0		DCK " 2)				
			0	1	0		К4) L*9)				
			0	1	1	ZIIIS (DIT CIOC	r 0) k*16)				
			1	0	0	8ms (BIT Cloc	r 10) k * 32)				
			1	0	1	16ms (BIT Clo	n <i>32)</i> ick * 64) (defei	ılt)			
			1	1	0	32ms (BIT Clo	ck * 128)	,			
			1	1	1	64ms (BIT Clo	ck * 256)				
			0 0 1 1 1 1	1 1 0 0 1	0 1 0 1 0 1	2ms (BIT Cloc 4ms (BIT Cloc 8ms (BIT Cloc 16ms (BIT Clo 32ms (BIT Clo 64ms (BIT Clo	k * 8) k * 16) k * 32) ck * 64) (defau ck * 128) ck * 256)	ult)			

10 Watchdog timer

Watchdog timer (WDT) rapidly detects the CPU malfunction such as endless looping caused by noise or something like that, and resumes the CPU to the normal state. Watchdog timer signal for malfunction detection can be used as either a CPU reset or an interrupt request. When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals.

It is possible to use free running 8-bit timer mode (WDTRSON='0') or watch dog timer mode (WDTRSON='1') by setting WDTCR[6] bit. If WDTCR[5] is set to '1', the WDT counter value is cleared and counts up. After 1 machine cycle, this bit is cleared to '0' automatically.

The WDT consists of an 8-bit binary counter and a watchdog timer data register. When value of the 8bit binary counter is equal to the 8 bits of WDTCNT, an interrupt request flag is generated. This can be used as a watchdog timer interrupt or a reset signal of CPU in accordance with a bit WDTRSON.

Input clock source of the WDT is BIT overflow. An interval between watchdog timer interrupts is decided by BIT overflow period and WDTDR set value. The equation can be described as the followings:

WDT Interrupt Interval = (BIT Interrupt Interval) X (WDTDR Value+1)

10.1 WDT interrupt timing waveform

Figure 30. Watch Dog Timer Interrupt Timing Waveform

10.2 WDT block diagram

Figure 31. Watch Dog Timer Block Diagram

10.3 Register map

Table 12. Watchdog Timer Register Map

Name	Address	Direction	Default	Description
WDTCNT	8EH	R	00H	Watch Dog Timer Counter Register
WDTDR	8EH	W	FFH	Watch Dog Timer Data Register
WDTCR	8DH	R/W	00H	Watch Dog Timer Control Register

10.4 Register description

WDTCNT (Watch Dog Timer Counter Register: Read Case): 8EH

7	6	5	4	3	2	1	0	
WDTCNT7	WDTCNT6	WDTCNT5	WDTCNT4	WDTCNT3	WDTCNT2	WDTCNT1	WDTCNT 0	
R	R	R	R	R	R	R	R	
Initial value: 00H								

WDTCNT[7:0] WDT Counter

WDTDR (Watch Dog Timer Data Register: Write Case): 8EH

7	6	5	4	3	2	1	0
WDTDR7	WDTDR6	WDTDR5	WDTDR4	WDTDR3	WDTDR2	WDTDR 1	WDTDR0
W	W	W	W	W	W	W	W
						Initial	value: FFH

WDTDR[7:0]

Set a period WDT Interrupt Interval=(BIT Interrupt Interval) x(WDTDR Value+1) **NOTE:** Do not write "0" in the WDTDR register.

WDTCR (Watch Dog Timer Control Register): 8DH

7	6	5	4	3	2	1	0			
WDTEN	WDTRSON	WDTCL	-	-	-	WDTCK	WDTIFR			
RW	RW	RW	-	-	-	RW	RW			
						Initial	value: 00H			
	WDTEN		Control WDT Operation							
		0) Disable	Э						
		1	Enable							
	WD	rrson c	Control WDT R	ESET Operation	on					
		C	0 Free Running 8-bit timer							
		1	Watch	Dog Timer RE	SET ON					
	WD	TCL C	Clear WDT Cou	unter						
		C	0 Free Run							
		1	1 Clear WDT Counter (auto clear after 1 Cycle)							
	WD	ГСК С	Control WDT Clock Selection Bit							
		C	BIT ove	erflow for WDT	- clock					
		1	BIT ove	erflow/8 for WI	DT clock					
	WD	FIFR V '(When WDT Interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or auto clear by INT_ACK signal. Writing "1" has no effect.							
		C) WDT II	nterrupt no ger	neration					
		1	WDT II	nterrupt genera	ation					

11 Watch timer

Watch timer (WT) has functions for RTC (Real Time Clock) operation. It is generally used for RTC design. WT consists of a clock source select circuit, a timer counter circuit, an output select circuit and watch timer control registers.

Prior to operate WT, a user needs to determine an input clock source and output interval, and to set WTEN to '1' in watch timer control register (WTCR). It is able to execute simultaneously or individually. To stop or reset WT, clear the WTEN bit in WTCR register.

Although CPU is in STOP mode, a sub clock can be alive so that WT continues its operation. Watch timer counter circuits may be composed of 21-bit counter which contains low 14-bit with binary counter and high 7-bit counter in order to increase resolution. In WTDR, it can control WT clear and set interval value at write time, and it can read 7-bit WT counter value at read time.

11.1 WT block diagram

In this section, watch timer of A96G140/A96G148/A96A148 is described in a block diagram.

Figure 32. Watch Timer Block Diagram

11.2 Register map

Name	Address	Direction	Default	Description						
WTCNT	89H	R	00H	Watch Timer Counter Register						
WTDR	89H	W	7FH	Watch Timer Data Register						
WTCR	96H	R/W	00H	Watch Timer Control Register						

Table 13. Watch Timer Register Map

11.3 Watch timer register description

WTCNT (Watch Timer Counter Register: Read Case): 89H

7	6	5	4	3	2	1	0
-	WTCNT6	WTCNT5	WTCNT4	WTCNT3	WTCNT2	WTCNT1	WTCNT0
-	R	R	R	R	R	R	R
						Initial	value: 00H

WTCNT[6:0] WT Counter

WTDR (Watch Timer Data Register: Write Case): 89H

7	6	5	4	3	2	1	0		
WTCL	WTDR6	WTDR5	WTDR4	WTDR3	WTDR2	WTDR1	WTDR0		
RW	W	W	W	W	W	W	W		
Ini							value: 7FH		
	WTC	CL	Clear WT Counter						
			0 Free R	un					
			1 Clear WT Counter (auto clear after 1 Cycle)						
	WTE	DR[6:0]	Set WT period						
WT Interrupt Interval=fwck/(2^14 x(7bit WTDR Value+1))									
NOTE: Do not write "0" in the WTDR register.									

7	6	5	4	3	3	2	1	0		
WTEN	-	_	WTIFR	WT	1N1	WTINO	WTCK1	WTCK0		
RW	-	-	RW	R/	W	RW	RW	RW		
							Initial	value: 00H		
	WTE	EN C	Control Watch Timer							
		() D	isable						
		1	E	nable						
	WTI	FR ۱ ۱ ۲	When WT Interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal. Writing "1" has no effect.							
		() W	T Interrup	pt no ge	eneration				
		1	W	T Interrup	pt gene	ration				
	WTI	N[1:0]	Determine ir	iterrupt in	terval					
			WTIN1 W	TINO I	Descrip	otion				
			0 0	f	fwcк/2^7	7				
			0 1	f	f _{wcк} /2^⁄	13				
			1 0	f	f _{wcк} /2^⁄	14				
			1 1	f	fwcк/(2^	14 x (7bit WT	DR Value+1))			
	WTC	CK[1:0]	Determine S	ource Clo	ock					
			WTCK1 W	ТСК0 І	Descrip	tion				
			0 0	f	fsuв					
			0 1	f	fx/256					
			1 0	f	fx/128					
			1 1	f	f _X /64					

WTCR (Watch Timer Control Register): 96H

NOTES:

- 1. fx– System clock frequency (Where fx= 4.19MHz)
- 2. f_{SUB}– Sub clock oscillator frequency (32.768kHz)
- 3. fwck- Selected Watch timer clock

12 Timer 0/1/2/3/4/5

12.1 Timer 0

An 8-bit timer 0 consists of a multiplexer, a timer 0 counter register, a timer 0 data register, a timer 0 capture data register and a timer 0 control register (T0CNT, T0DR, T0CDR, T0CR).

Timer 0 operates in one of three modes introduced in the followings:

- 8-bit timer/counter mode
- 8-bit PWM output mode
- 8-bit capture mode

Timer/counter 0 can be clocked by an internal or an external clock source (EC0). The clock source is selected by clock selection logic which is controlled by clock selection bits T0CK[2:0].

• TIMER0 clock source: fx/2, 4, 8, 32, 128, 512, 2048 and EC0

In capture mode, data is captured into input capture data register (T0CDR) by EINT10. In timer/counter mode, whenever counter value is equal to T0DR, T0O port toggles. In addition, timer 0 outputs PWM waveform through PWM0O port in the PWM mode.

TOEN	T0MS[1:0]	T0CK[2:0]	Timer 0
1	00	XXX	8-bit Timer/Counter Mode
1	01	XXX	8-bit PWM Mode
1	1X	XXX	8-bit Capture Mode

 Table 14. Timer 0 Operating Mode

12.1.1 8-bit timer/counter mode

As shown in figure 29, 8-bit timer/counter mode is selected by control register.

8-bit timer has counter and data registers. The counter register is increased by internal or external clock input. Timer 0 can use the input clock with one of 2, 4, 8, 32, 128, 512 and 2048 prescaler division rates (T0CK[2:0]). When both values of T0CNT and T0DR are identical to each other in timer 0, a match signal is generated and the interrupt of Timer 0 occurs.T0CNT value is automatically cleared by the match signal, and can be cleared by software (T0CC) too.

External clock (EC0) counts up the timer at the rising edge. If the EC0 is selected as a clock source by T0CK[2:0], EC0 port should be set as an input port by configuring P52IO bit.

Figure 33. 8-bit Timer/Counter Mode for Timer 0

Figure 34. 8-bit Timer/Counter 0 Example

12.1.2 8-bit PWM mode

Timer 0 has a high speed PWM (Pulse Width Modulation) function. In PWM mode, T0O/PWM0O pin outputs up to 8-bit resolution PWM output. This pin should be configured as a PWM output by setting the T0O/PWM0O function by P5FSR[5:4] bits.

In 8-bit timer/counter mode, a match signal is generated when the counter value is identical to the value of T0DR. When values of T0CNT and T0DR are identical to each other in timer 0, a match signal is generated and the interrupt of timer 0 occurs.

In PWM mode, the match signal does not clear the counter. Instead, it runs continuously, overflowing at "FFH". Then the counter continues incrementing from "00H". The timer 0 overflow interrupt is generated whenever a counter overflow occurs. T0CNT value is cleared by software (T0CC) bit.

Figure 35. 8-bit PWM Mode for Timer 0

Figure 36. PWM Output Waveforms in PWM Mode for Timer 0

12.1.3 8-bit capture mode

Timer 0 capture mode is set by configuring T0MS[1:0] as '1x'. Clock source can use the internal/external clock. Basically, it has the same function as the 8-bit timer/counter mode has, and the interrupt occurs when T0CNT equals to T0DR. T0CNTvalue is automatically cleared by match signal and it can be also cleared by software (T0CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T0CDR. In the timer 0 capture mode, timer 0 output (T0O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT10 function is chosen. Of course, the EINT10 pin must be set to an input port.

T0CDR and T0DR are in the same address. In the capture mode, reading operation readsT0CDR, not T0DR and writing operation will update T0DR.

Figure 37. 8-bit Capture Mode for Timer 0

Figure 39. Express Timer Overflow in Capture Mode

12.1.4 Timer 0 block diagram

Figure 40. 8-bit Timer 0 Block Diagram

12.1.5 Register map

Table 15. Timer 0 Register Map

Name	Address	Direction	Default	Description
TOCNT	B3H	R	00H	Timer 0 Counter Register
T0DR	B4H	R/W	FFH	Timer 0 Data Register
T0CDR	B4H	R	00H	Timer 0 Capture Data Register
TOCR	B2H	R/W	00H	Timer 0 Control Register

12.1.6 Register description

T0CNT (Timer 0 Counter Register): B3H

7	6	5	4	3	2	1	0
T0CNT7	TOCNT6	T0CNT5	T0CNT4	T0CNT3	T0CNT2	T0CNT1	T0CNT0
R	R	R	R	R	R	R	R
						Initial	value: 00H
	TOC	NT[7:0]	T0 Counter				

T0DR (Timer 0 Data Register): B4H

7	6	5	4	3	2	1	0
T0DR7	T0DR6	T0DR5	T0DR4	T0DR3	T0DR2	T0DR1	T0DR0
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: FFH
	T0D	R[7:0]		T0	Data		

T0CDR (Timer 0 Capture Data Register: Read Case, Capture mode only): B4H

7	6	5	4	3	2	1	0
T0CDR7	T0CDR6	T0CDR5	T0CDR4	T0CDR3	T0CDR2	T0CDR1	T0CDR0
R	R	R	R	R	R	R	R

Initial value: 00H

T0CDR[7:0] T0 Capture Data

7 6 5 4 3 2 1 0 **TOEN** T0MS1 TOMS0 T0CK2 T0CK1 TOCK0 TOCC _ RW RW RW RW RW RW RW Initial value: 00H **T0EN** Control Timer 0 0 Timer 0 disable 1 Timer 0 enable T0MS[1:0] Control Timer 0 Operation Mode T0MS1 T0MS0 Description 0 0 Timer/counter mode 0 1 PWM mode 1 х Capture mode T0CK[2:0] Select Timer 0 clock source. fx is a system clock frequency T0CK2 T0CK1 T0CK0 Description 0 0 fx/2 0 0 0 fx/4 1 0 fx/8 1 0 0 1 1 fx/32 1 0 0 fx/128 0 fx/512 1 1 fx/2048 1 1 0 1 1 1 External Clock (EC0)

T0CR (Timer 0 Control Register): B2H

T0CC Clear timer 0 Counter

0 No effect 1 Clear the Timer

Clear the Timer 0 counter (When write, automatically cleared "0" after being cleared counter)

NOTES:

1. Match Interrupt is generated in Capture mode.

2. Refer to the external interrupt flag 1 register (EIFLAG1) for the T0 interrupt flags.

12.2 Timer 1

A 16-bit timer 1 consists of multiplexer, timer 1 A data register high/low, timer 1 B data register high/low and timer 1 control register high/low (T1ADRH, T1ADRL, T1BDRH, T1BDRL, T1CRH, T1CRL).

Timer 1 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 1 uses an internal clock or an external clock (EC1) as an input clock source. The clock sources are introduced below, and one is selected by clock selection logic which is controlled by clock selection bits (T1CK[2:0]).

• TIMER 1 clock source: fX/1, 2, 4, 8, 64, 512, 2048 and EC1

In capture mode, the data is captured into input capture data register (T1BDRH/T1BDRL) by EINT11. Timer 1 results in the comparison between counter and data register through T1O port in timer/counter mode. In addition, Timer 1 outputs PWM waveform through PWM1Oport in the PPG mode.

T1EN	P1FSRL[5:4]	T1MS[1:0]	T1CK[2:0]	Timer 1
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1	11	10	XXX	16 Bit PPG Mode(one-shot mode)
1	11	11	XXX	16 Bit PPG Mode(repeat mode)

Table 16. TIMER 1 Operating Modes

12.2.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in figure 37. The counter register is increased by internal or external clock input. Timer 1 can use the input clock with one of 1, 2, 4, 8, 64, 512 and 2048 prescaler division rates (T1CK[2:0]). When the value of T1CNTH, T1CNTL and the value of T1ADRH, T1ADRL are identical to each other in Timer 1, a match signal is generated and the interrupt of Timer1 occurs. The T1CNTH, T1CNTL value is automatically cleared by the match signal. It can be cleared by software (T1CC) too.

The external clock (EC1) counts up the timer at the rising edge. If the EC1 is selected as a clock source by T1CK[2:0], EC1 port should be set to the input port by P13IO bit.

Figure 41. 16-bit Timer/Counter Mode of Timer 1

Figure 42. 16-bit Timer/Counter Mode Operation Example

12.2.2 16-bit capture mode

It uses an internal/external clock as a clock source. Basically, the 16-bit timer 1 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T1CNTH/T1CNTL is equal to T1ADRH/T1ADRL. The T1CNTH, T1CNTL values are automatically cleared by a match signal. It can be cleared by software (T1CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T1BDRH/T1BDRL.

According to EIPOL1 registers setting, the external interrupt EINT11 function is selected. EINT11 pin must be set as an input port.

Figure 43. 16-bit Capture Mode of Timer 1

Figure 44. 16-bit Capture Mode Operation Example

12.2.3 16-bit PPG mode

TIMER 1 has a PPG (Programmable Pulse Generation) function. In PPG mode, T1O/PWM1O pin outputs up to 16-bit resolution PWM output. For this function, T1O/PWM1O pin must be configured as a PWM output by setting P1FSRL[5:4] to '11'. Period of the PWM output is determined by T1ADRH/T1ADRL, and duty of the PWM output is determined by T1BDRH/T1BDRL.

Figure 45. 16-bit PPG Mode of Timer 1

Repeat Mode(T1MS = 11b) and "Start High"(T1POL = 0) Clear and Start Clear and Start	<u>b).</u>
Timer 1 clock	
Counter X 0 1 2 3 4	5 6 7 8 M-1 0 1 2 3 4
T1ADRH/L M	
T1 Interrupt	
1. T1BDRH/L(5) < T1ADRH/L	
PWM10	B Match A Match
2. T1BDRH/L >= T1ADRH/L	
PWM1O	A Match
3. T1BDRH/L = "0000H"	
PWM10 Low Level	A Match
<u>I</u>	
<u>One-shot Mode(T1MS = 10b) and "Start High"(T1POL =</u>	<u>0b).</u>
Set T1EN —↓ Clear and Start	
Counter X 0 1 2 3 4	5 6 7 8 M-1 0
T1ADRH/L M	
T1 Interrupt	
1. T1BDRH/L(5) < T1ADRH/L	
PWM10	B Match A Match
2. T1BDRH/L >= T1ADRH/L	
PWM10	A Match
3. T1BDRH/L = "0000H"	
PWM10 Low Level	A Match

Figure 46. 16-bit PPG Mode Operation Example

12.2.4 16-bit timer 1 block diagram

In this section, a 16-bit timer 1 is described in a block diagram.

Figure 47. 16-bit Timer 1 Block Diagram

12.2.5 Register map

Table 17. TIMER 1 Register Map

Name	Address	Direction	Default	Description
T1ADRH	BDH	R/W	FFH	Timer 1 A Data High Register
T1ADRL	BCH	R/W	FFH	Timer 1 A Data Low Register
T1BDRH	BFH	R/W	FFH	Timer 1 B Data High Register
T1BDRL	BEH	R/W	FFH	Timer 1 B Data Low Register
T1CRH	BBH	R/W	00H	Timer 1 Control High Register
T1CRL	BAH	R/W	00H	Timer 1 Control Low Register

12.2.6 Register description

T1ADRH (Timer 1 A data High Register): BDH

7	6	5	4	3	2	1	0
T1ADRH7	T1ADRH6	T1ADRH5	T1ADRH4	T1ADRH3	T1ADRH2	T1ADRH1	T1ADRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Initial	value: FFH
	T1A	DRH[7:0]		T1	A Data High E	Byte	

T1ADRL (Timer 1 A Data Low Register): BCH

7	6	5	4	3	2	1	0
T1ADRL7	T1ADRL6	T1ADRL5	T1ADRL4	T1ADRL3	T1ADRL2	T1ADRL1	T1ADRL0
R/W							
						Initial	value: FFH

T1ADRL[7:0]

T1 A Data Low Byte

NOTE: Do not write "0000H" in the T1ADRH/T1ADRL register when PPG mode

T1BDRH (Timer 1 B Data High Register): BFH

7	6	5	4	3	2	1	0
T1BDRH7	T1BDRH6	T1BDRH5	T1BDRH4	T1BDRH3	T1BDRH2	T1BDRH1	T1BDRH0
R/W							
						Initial	value: FFH

T1BDRH[7:0] T1 B Data High Byte

T1BDRL (Timer 1 B Data Low Register): BEH

7	6	5	4	3	2	1	0
T1BDRL7	T1BDRL6	T1BDRL5	T1BDRL4	T1BDRL3	T1BDRL2	T1BDRL1	T1BDRL0
R/W							

Initial value: FFH

T1BDRL[7:0] T1 B Data Low Byte

7	6	5	4		3	2	1	0	
T1EN	_	T1MS1	T1MS0		_	_	-	T1CC	
RW	-	R/W	RW		-	-	-	RW	
							Initial	value: 00H	
	T1E	N C	Control Timer 1						
		0	0 Timer 1 disable						
		1	Т	mer 1	enable (Cou	unter clear and	d start)		
	T1M	S[1:0] C	Control Timer 1 Operation Mode						
		Т	1MS1 T	1MS0	0 Description				
		0	0		Timer/cour	nter mode (T10	D: toggle at A r	natch)	
		0	1		Capture mo	ode (The A ma	atch interrupt c	an occur)	
		1	0		PPG one-s	hot mode (PW	/M1O)		
		1	1		PPG repea	t mode (PWM	10)		
	T1C	c c	lear Time	· 1 Cοι	unter				
		0	N	o effec	ct				
		1	C cl	lear th eared	e Timer 1 co "0" after bei	ounter (When v ng cleared cou	write, automati unter)	cally	

T1CRH (Timer 1ControlHigh Register): BBH

7	6	5	4	ł	3		2	1	0
T1CK2	T1CK1	T1CK0	T1I	FR			T1POL	T1ECE	T1CNTR
R/W	R/W	R/W	R/	W	-		RW	RW	RW
								Initial	value: 00H
	T1C	K[2:0]	Select T	imer 1	clock sourc	ce. f	x is main syste	em clock freque	ency
			T1CK2	T1CK	1 T1CK0	De	escription		
			0	0	0	fx/	/2048		
			0	0	1	fx/	/512		
			0	1	0	fx/	/64		
			0	1	1	fx/	/8		
			1	0	0	fx/	/4		
			1	0	1	fx/	/2		
			1	1	0	fx/	/1		
			1	1	1	Ex	kternal clock (E	EC1)	
	T1IF	R	When T1 Interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or auto clear by INT_ACK signal. Writing "1" has no effect					ng bit, write is no effect.	
			0	T1 In	terrupt no g	gene	eration		
			1	T1 In	terrupt gen	erat	ion		
	T1P	OL	T1O/PW	'M10 F	olarity Sele	ectic	on		
			0	Start	High (T10/	/PW	M1O is low lev	vel at disable)	
			1	Start	Low (T1O/	PWI	M1O is high le	vel at disable)	
	T1E	CE	Timer 1	Externa	al Clock Ed	lge S	Selection		
			0	Exter	nal clock fa	alling	g edge		
			1	Exter	nal clock ri	sing	l edge		
	T1C	NTR	Timer 1	Counte	r Read Co	ntro	I		
			0	No ef	fect				
			1	Load auton	the countenatically cle	er va eare	alue to the B d d "0" after beir	ata register (V ng loaded)	Vhen write,

T1CRL (Timer 1ControlLow Register): BAH

12.3 Timer 2

A 16-bit timer 2 consists of a multiplexer, timer 2 A data high/low register, timer 2 B data high/low register and timer 2 control high/low register (T2ADRH, T2ADRL, T2BDRH, T2BDRL, T2CRH, and T2CRL).

Timer 2 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 2 can be a divided clock of a system clock which is selected from prescaler output and T1 A Match (timer 1 A match signal). The clock source is selected by a clock selection logic, controlled by clock selection bits (T2CK[2:0]).

• TIMER 2 clock source: fX/1, fX/2, fX/4,fX/8,fX/32, fX/128, fX/512 and T1 A Match

In capture mode, data is captured into input capture data registers (T2BDRH/T2BDRL) by EINT12. In timer/counter mode, whenever counter value is equal to T2ADRH/L, T2O port toggles. In addition, the timer 2 outputs PWM waveform to PWM2O port in the PPG mode.

T2EN	P1FSRL[3:2]	T2MS[1:0]	T2CK[2:0]	Timer 2
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1	11	10	XXX	16 Bit PPG Mode(one-shot mode)
1	11	11	XXX	16 Bit PPG Mode(repeat mode)

Table 18. TIMER 2 Operating Modes

12.3.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in figure 44. The counter register is increased by internal or timer 1 A match clock input.

Timer 2 can use the input clock with one of 1, 2, 4, 8, 32, 128, 512 and T1 A Match prescaler division rates (T2CK[2:0]). When the values of T2CNTH/T2CNTL and T2ADRH/T2ADRL are identical to each other in timer 2, a match signal is generated and the interrupt of Timer 2 occurs. The T2CNTH/T2CNTL values are automatically cleared by the match signal. It can be cleared by software (T2CC) too.

Figure 49. 16-bit Timer/Counter Mode Operation Example

12.3.2 16-bit capture mode

Timer 2 capture mode is set by configuring T2MS[1:0] as '01'. It uses an internal clock as a clock source. Basically, the 16-bit timer 2 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T2CNTH/T2CNTL is equal to T2ADRH/T2ADRL. The T2CNTH, T2CNTL values are automatically cleared by a match signal. It can be cleared by software (T2CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T2BDRH/T2BDRL. In timer 2 capture mode, timer 2 output (T2O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT12 function is selected. EINT12 pin must be set as an input port.

Figure 50. 16-bit Capture Mode of Timer 2

Figure 52. Express Timer Overflow in Capture Mode

12.3.3 16-bit PPG mode

TIMER 2 has a PPG (Programmable Pulse Generation) function. In PPG mode, T2O/PWM2O pin outputs up to 16-bit resolution PWM output. For this function, T2O/PWM2O pin must be configured as a PWM output by setting P1FSRL[3:2] to '11'. Period of the PWM output is determined by T2ADRH/T2ADRL, and duty of the PWM output is determined by T2BDRH/T2BDRL.

Figure 53. 16-bit PPG Mode of Timer 2

Repeat Mode(T2MS = 11b) and "Start High"(T2POL =	<u>0b).</u>	
Timer 2 clock		
Counter X 0 1 2 3 4	5 6 7 8 M-1	
T2ADRH/L M	//	
T2 Interrupt		
1. T2BDRH/L(5) < T2ADRH/L		V
PWM2O	B Match	A Match
2. T2BDRH/L >= T2ADRH/L		
PWM2O		A Match
3. T2BDRH/L = "0000H"		
PWM2O Low Level		A Match
One-shot Mode(T2MS = 10b) and "Start High"(T2POL	<u>= 0b).</u>	
Set T2EN — Clear and Start		
Timer 2 clock		
Counter X 0 1 2 3 4	5 6 7 8 M-1	0
T2ADRH/L M	//	
T2 Interrupt		
1. T2BDRH/L(5) < T2ADRH/L		
PWM2O	B Match	A Match
2. T2BDRH/L >= T2ADRH/L		
PWM2O		A Match
3. T2BDRH/L = "0000H"		
PWM2O Low Level		A Match

Figure 54. 16-bit PPG Mode Operation Example

12.3.4 16-bit timer 2 block diagram

In this section, a 16-bit timer 2 is described in a block diagram.

Figure 55. 16-bit Timer 2 Block Diagram

12.3.5 Register map

Table 19. TIMER 2 Register Map

Name	Address	Direction	Default	Description
T2ADRH	C5H	R/W	FFH	Timer 2 A Data High Register
T2ADRL	C4H	R/W	FFH	Timer 2 A Data Low Register
T2BDRH	C7H	R/W	FFH	Timer 2 B Data High Register
T2BDRL	C6H	R/W	FFH	Timer 2 B Data Low Register
T2CRH	C3H	R/W	00H	Timer 2 Control High Register
T2CRL	C2H	R/W	00H	Timer 2 Control Low Register

12.3.6 Register description

T2ADRH (Timer 2 A data High Register): C5H

7	6	5	4	3	2	1	0		
T2ADRH7	T2ADRH6	T2ADRH5	T2ADRH4	T2ADRH3	T2ADRH2	T2ADRH1	T2ADRH0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Initial value: FFH								

T2ADRH[7:0] T2 A Data High Byte

T2ADRL (Timer 2 A Data Low Register): C4H

7	6	5	4	3	2	1	0		
T2ADRL7	T2ADRL6	T2ADRL5	T2ADRL4	T2ADRL3	T2ADRL2	T2ADRL1	T2ADRL0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Initial value: FFH									
T2ADRL[7:0] T2 A Data Low Byte									

NOTE: Do not write "0000H" in the T2ADRH/T2ADRL register when PPG mode.

T2BDRH (Timer 2 B Data High Register): C7H

7	6	5	4	3	2	1	0
T2BDRH7	T2BDRH6	T2BDRH5	T2BDRH4	T2BDRH3	T2BDRH2	T2BDRH1	T2BDRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value: FFH							

T2BDRH[7:0] T2 B Data High Byte

T2BDRL (Timer 2 B Data Low Register): C6H

7	6	5	4	3	2	1	0	
T2BDRL7	T2BDRL6	T2BDRL5	T2BDRL4	T2BDRL3	T2BDRL2	T2BDRL1	T2BDRL0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value: FFH								

T2BDRL[7:0] T2 B Data Low

7	6	5	4	3	2	1	0			
T2EN	-	T2MS1	T2MS0	-	-	-	T2CC			
R/W	-	R/W	RW	-	-	-	RW			
						Initial	value: 00H			
	T2E	N C	Control Time	r 2						
		C) Tir	ner 2 disable						
		1	Tir	ner 2 enable (Co	unter clear and	d start)				
	T2M	IS[1:0] C	Control Timer 20peration Mode							
		Т	2MS1 T2	MS0 Descriptior	า					
		C	0	Timer/cour	nter mode (T20	D: toggle at A r	match)			
		C) 1	Capture m	ode (The A ma	atch interrupt c	an occur)			
		1	0	PPG one-s	shot mode (PW	/M2O)				
		1	1	PPG repea	at mode (PWM	20)				
	T2C	c c	Clear Timer	2 Counter						
		C) No	effect						
		1	Cle	ear the Timer 2 c ared "0" after bei	ounter (When ng cleared cou	write, automati ınter)	cally			

T2CRH (Timer 2ControlHigh Register): C3H

T2CRL (Timer 2ControlLow Register): C2H

7	6	5	4	ļ	3		2	1	0
T2CK2	T2CK1	T2CK0	T2I	FR	_		T2POL	Ι	T2CNTR
R/W	R/W	R/W	R/	W	_		RW	-	RW
								Initial	value: 00H
	T2C	K[2:0] S	Select T	imer 2 d	clock sourc	e. fx i	is main syste	em clock frequ	ency
		Т	2CK2	T2CK	1 T2CK0	Des	cription		
		0)	0	0	fx/5	12		
		0)	0	1	fx/12	28		
		0)	1	0	fx/32	2		
		C)	1	1	fx/8			
		1		0	0	fx/4			
		1		0	1	fx/2			
		1		1	0	fx/1			
		1		1	1	T1 A	A Match		
	T2IF	R V v	Vhen T2 vrite '0' i effect.	2 Match to this b	Interrupt o vit or auto c	ccurs clear b	s, this bit bec by INT_ACK	comes '1'. For signal. Writing	clearing bit, 1 "1" has no
		C)	T2inte	errupt no ge	enera	tion		
		1		T2 inte	errupt gene	eratio	n		
	T2P	OL T	20/PW	/M2O P	olarity Sele	ection	1		
		C)	Start I	ligh (T2O/	PWM	12O is low lev	vel at disable)	
		1		Start I	_ow (T2O/F	PWM2	2O is high le	vel at disable)	
	T2C	NTR T	imer 2	Counte	r Read Cor	ntrol			
		0)	No eff	ect				
		1		Load autom	the counte atically cle	r valu ared	ue to the B d "0" after beir	lata register (V ng loaded)	Vhen write,

12.4 Timer 3

A 16-bit timer 3 consists of a multiplexer, timer 3 A data high/low register, timer 3 B data high/low register and timer 3 control high/low register (T3ADRH, T3ADRL, T3BDRH, T3BDRL, T3CRH, and T3CRL).

Timer 3 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 3 can be clocked by an internal or an external clock source (EC3). The clock source is selected by a clock selection logic controlled by clock selection bits (T3CK[2:0]).

• TIMER 3 clock source: fX/1, fX/2, fX/4,fX/8,fX/64, fX/512, fX/2048 and EC3

In capture mode, data is captured into input capture data registers (T3BDRH/T3BDRL) by EINT3. Timer 3 results in the comparison between counter and data register through T3O port in timer/counter mode. In addition, timer 3 outputs PWM waveform through PWM3O port in the PPG mode.

T3EN	P0FSRH[1:0]	T3MS[1:0]	T3CK[2:0]	Timer 3
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1	11	10	XXX	16 Bit PPG Mode(one-shot mode)
1	11	11	XXX	16 Bit PPG Mode(repeat mode)

Table 20. TIMER 3 Operating Modes

12.4.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in figure 52. The counter register is increased by internal or external clock input. Timer 3 can use the input clock with one of 1, 2, 4, 8, 64, 512 and 2048 prescaler division rates (T3CK[2:0]). When the values of T3CNTH/T3CNTL and T3ADRH/T3ADRL are identical to each other in timer 3, a match signal is generated and the interrupt of Timer 3 occurs. The T3CNTH/T3CNTL values are automatically cleared by the match signal. It can be cleared by software (T3CC) too.

External clock (EC3) counts up the timer at the rising edge. If the EC3 is selected as a clock source by T3CK[2:0], EC3 port should be set as an input port by configuring P00 IO bit.

Figure 56. 16-bit Timer/Counter Mode of Timer 3

Figure 57. 16-bit Timer/Counter Mode Operation Example

12.4.2 16-bit capture mode

Timer 3 capture mode is set by configuring T3MS[1:0] as '01'. It uses an internal/external clock as a clock source. Basically, the 16-bit timer 3 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T3CNTH/T3CNTL is equal to T3ADRH/T3ADRL. The T3CNTH, T3CNTL values are automatically cleared by a match signal. It can be cleared by software (T3CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T3BDRH/T3BDRL.

According to EIPOL0L registers setting, the external interrupt EINT3 function is selected. EINT3 pin must be set as an input port.

Figure 58. 16-bit Capture Mode of Timer 3

Figure 60. Express Timer Overflow in Capture Mode

12.4.3 16-bit PPG mode

TIMER 3 has a PPG (Programmable Pulse Generation) function. In PPG mode, T3O/PWM3O pin outputs up to 16-bit resolution PWM output. For this function, T3O/PWM3O pin must be configured as a PWM output by setting P0FSRH[1:0] to '11' or P0FSRL[3:2] to '01'. Period of the PWM output is determined by T3ADRH/T3ADRL, and duty of the PWM output is determined by T3BDRH/T3BDRL.

Figure 61. 16-bit PPG Mode of Timer 3

Repeat Mode(T3MS = 11b) and "Start High"(T3POL =	<u>0b).</u>
Timer 3 clock	
Counter $X 0 1 2 3 4$	5 6 7 8 M M 1 0 1 2 3 4
T3ADRH/L M	
T3 Interrupt	
1. T3BDRH/L(5) < T3ADRH/L	\downarrow $\langle \downarrow$
PWM3O	B Match A Match
2. T3BDRH/L >= T3ADRH/L	
PWM3O	A Match
3. T3BDRH/L = "0000H"	
PWM3O Low Level	A Match
<u>One-shot Mode(T3MS = 10b) and "Start High"(T3POL</u> Set T3EN — Clear and Start	<u>= 0b).</u>
Counter X 0 1 2 3 4	
T3ADRH/L M	
T3 Interrupt	
ا 1. T3BDRH/L(5) < T3ADRH/L	\downarrow $\langle \downarrow$
PWM3O	B Match A Match
2. T3BDRH/L >= T3ADRH/L	
PWM3O	A Match
3. T3BDRH/L = "0000H"	
PWM3O Low Level	A Match

Figure 62. 16-bit PPG Mode Operation Example

12.4.4 16-bit timer 3 block diagram

In this section, a 16-bit timer 3 is described in a block diagram.

Figure 63. 16-bit Timer 3 Block Diagram

12.4.5 Register map

Table 21. TIMER 3 Register Map

Name	Address	Direction	Default	Description
T3ADRH	1002H	R/W	FFH	Timer 3 A Data High Register
T3ADRL	1003H	R/W	FFH	Timer 3 A Data Low Register
T3BDRH	1004H	R/W	FFH	Timer 3 B Data High Register
T3BDRL	1005H	R/W	FFH	Timer 3 B Data Low Register
T3CRH	1000H	R/W	00H	Timer 3 Control High Register
T3CRL	1001H	R/W	00H	Timer 3 Control Low Register

12.4.6 Register description

T3ADRH (Timer 3 A data High Register): 1002H

7	6	5	4	3	2	1	0
T3ADRH7	T3ADRH6	T3ADRH5	T3ADRH4	T3ADRH3	T3ADRH2	T3ADRH1	T3ADRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							value: FFH
	T3A	DRH[7:0]	T3 A Data Hig	h Byte			

T3ADRL (Timer 3 A Data Low Register): 1003H

7	6	5	4	3	2	1	0	
T3ADRL7	T3ADRL6	T3ADRL5	T3ADRL4	T3ADRL3	T3ADRL2	T3ADRL1	T3ADRL0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value: FFH								
T3ADRL[7:0] T3 A Dat				Data Low Byte				
NOTE: Do not write "0000H" in the T3ADRH/T3ADRL register								

E: Do not write "0000H" in the T3ADRH/T3ADRL register when PPG mode

T3BDRH (Timer 3 B Data High Register): 1004H

7	6	5	4	3	2	1	0	
T3BDRH7	T3BDRH6	T3BDRH5	T3BDRH4	T3BDRH3	T3BDRH2	T3BDRH1	T3BDRH0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value: FFH								
	T3B	DRH[7:0]	T3 B Data Hig	h Byte				

T3BDRL (Timer 3 B Data Low Register): 1005H

7	6	5	4	3	2	1	0	
T3BDRL7	T3BDRL6	T3BDRL5	T3BDRL4	T3BDRL3	T3BDRL2	T3BDRL1	T3BDRL0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value: FFH								

T3BDRL[7:0] T3 B Data Low Byte

7	6	5	4	3	2	1	0		
T3EN	_	T3MS1	T3MS0	-	-	-	T3CC		
RW	-	R/W	RW	-	-	-	RW		
						Initial	value: 00H		
	T3E	N C	Control Time	r 3					
		C) Tin	ner 3 disable					
1 Timer 3 enable (Counter clear and start)									
T3MS[1:0] Control Timer 3 Operation Mode									
		Т	3MS1 T3	MS0 Description	ו				
		C	0	Timer/cour	nter mode (T30	D: toggle at A r	match)		
		C) 1	Capture m	Capture mode (The A match interrupt can occur)				
		1	0	PPG one-s	PPG one-shot mode (PWM3O)				
		1	1	PPG repea	at mode (PWM	3O)			
	T3C	c c	Clear Timer	3 Counter					
		C) No	effect					
1 Clear the Timer 3 counter (When write, automatically cleared "0" after being cleared counter)									

T3CRH (Timer 3 Control High Register): 1000H

7	6	5	4	1	3	2	1	0	
T3CK2	T3CK1	T3CK0	T3I	FR	-	T3POL	T3ECE	T3CNTR	
R/W	R/W	R/W	R/	W	_	RW	RW	RW	
							Initial	value: 00H	
	T3C	K[2:0]	Select T	imer 3 cl	ock sourc	e. fx is main syste	em clock frequ	ency	
		-	T3CK2	T3CK1	T3CK0	Description			
		(C	0	0	fx/2048			
		(C	0	1	fx/512			
		(C	1	0	fx/64			
		(C	1	1	fx/8			
			1	0	0	fx/4			
			1	0	1	fx/2			
			1	1	0	fx/1			
			1	1	1	External clock (E	EC3)		
	T3IF	R Y	When T 0' to this	3 Interrup bit or au	ot occurs, ito clear by	this bit becomes y INT_ACK signal	'1'. For clearir . Writing "1" ha	ng bit, write is no effect.	
		(C	T3 Inte	rrupt no g	eneration			
			1	T3 Inte	rrupt gene	eration			
	T3P	OL .	T3O/PWM3O Polarity Selection						
		(C	Start H	igh (T3O/I	PWM3O is low lev	vel at disable)		
			1	Start Lo	ow (T3O/F	PWM3O is high le	vel at disable)		
	T3E	CE -	Timer 3	External	Clock Edg	ge Selection			
		(C	Externa	al clock fal	lling edge			
			1	Externa	al clock ris	sing edge			
	T3C	NTR	Timer 3	Counter	Read Cor	ntrol			
		(C	No effe	ct				
			1	Load th automa	ne counter atically cle	r value to the B d ared "0" after beir	ata register (V ng loaded)	Vhen write,	

T3CRL (Timer 3 Control Low Register): 1001H

12.5 Timer 4

A 16-bit timer 4 consists of a multiplexer, timer 4 A data high/low register, timer 4 B data high/low register and timer 4 control high/low register (T4ADRH, T4ADRL, T4BDRH, T4BDRL, T4CRH, and T4CRL).

Timer 4 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 4 can be a divided clock of a system clock selected from prescaler output and T3 A Match (timer 3 A match signal). The clock source is selected by a clock selection logic controlled by clock selection bits (T4CK[2:0]).

• TIMER 4 clock source: fX/1, fX/2, fX/4, fX/8, fX/32, fX/128, fX/512 and T3 A Match

In capture mode, data is captured into input capture data registers (T4BDRH/T4BDRL) by EINT4. In timer/counter mode, whenever counter value is equal to T4ADRH/L, T4O port toggles. In addition, the TIMER 4 outputs PWM waveform to PWM4O port in the PPG mode.

T4EN	P0FSRH[3:2]	T4MS[1:0]	T4CK[2:0]	Timer 4
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1	11	10	XXX	16 Bit PPG Mode(one-shot mode)
1	11	11	XXX	16 Bit PPG Mode(repeat mode)

Table 22. TIMER 4 Operating Modes

12.5.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in figure 60. The counter register is increased by internal or timer 4 A match clock input.

Timer 4 can use the input clock with one of 1, 2, 4, 8, 32, 128, 512 and T3 A Match prescaler division rates (T4CK[2:0]). When the values of T4CNTH/T4CNTL and T4ADRH/T4ADRL are identical to each other in timer 4, a match signal is generated and the interrupt of Timer 4 occurs. The T4CNTH/T4CNTL values are automatically cleared by the match signal. It can be cleared by software (T4CC) too.

Figure 64. 16-bit Timer/Counter Mode of Timer 4

Figure 65. 16-bit Timer/Counter Mode Operation Example

12.5.2 16-bit capture mode

Timer 4 capture mode is set by configuring T4MS[1:0] as '01'. It uses an internal clock as a clock source. Basically, the 16-bit timer 4 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T4CNTH/T4CNTL is equal to T4ADRH/T4ADRL. The T4CNTH, T4CNTL values are automatically cleared by a match signal. It can be cleared by software (T4CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T4BDRH/T4BDRL. In the timer 4 capture mode, timer 4 output (T4O) waveform is not available.

According to EIPOL0L registers setting, the external interrupt EINT4 function is selected. EINT4 pin must be set as an input port.

Figure 66. 16-bit Capture Mode of Timer 4

Figure 68. Express Timer Overflow in Capture Mode

12.5.3 16-bit PPG mode

TIMER 4 has a PPG (Programmable Pulse Generation) function. In PPG mode, T4O/PWM4O pin outputs up to 16-bit resolution PWM output. For this function, T4O/PWM4O pin must be configured as a PWM output by setting P0FSRH[3:2] to '11'. Period of the PWM output is determined by T4ADRH/T4ADRL, and duty of the PWM output is determined by T4BDRH/T4BDRL.

Figure 69. 16-bit PPG Mode of Timer 4

Repeat Mode(T4MS = 11b) and "Start High"(T4POL = Clear and Start Set T4EN	<u>0b).</u>
Counter $X \downarrow 0 \downarrow 1 \downarrow 2 \downarrow 3 \downarrow 4$	5 6 7 8 $M-1$ 0 1 2 3 4
T4ADRH/L M	
T4 Interrupt	
1. T4BDRH/L(5) < T4ADRH/L	\mathbf{i}
PWM4O	B Match A Match
2. T4BDRH/L >= T4ADRH/L	Y
PWM4O	A Match
3. T4BDRH/L = "0000H"	
PWM4O Low Level	A Match
<u>One-shot Mode(T4MS = 10b) and "Start High"(T4POL</u> Set T4EN — Clear and Start	<u>= 0b).</u>
Counter X 0 1 2 3 4	5 6 7 8 M-1 0
T4ADRH/L M I	
T4 Interrupt	
1. T4BDRH/L(5) < T4ADRH/L	$\mathbf{\dot{f}}$
PWM4O	B Match A Match
2. T4BDRH/L >= T4ADRH/L	
PWM4O	A Match
3. T4BDRH/L = "0000H"	
PWM4O Low Level	A Match

Figure 70. 16-bit PPG Mode Operation Example

12.5.4 16-bit timer 4 block diagram

Figure 71. 16-bit Timer 4 Block Diagram

12.5.5 Register map

Table 23. TIMER 4 Register Map

Name	Address	Direction	Default	Description
T4ADRH	100AH	R/W	FFH	Timer 4 A Data High Register
T4ADRL	100BH	R/W	FFH	Timer 4 A Data Low Register
T4BDRH	100CH	R/W	FFH	Timer 4 B Data High Register
T4BDRL	100DH	R/W	FFH	Timer 4 B Data Low Register
T4CRH	1008H	R/W	00H	Timer 4 Control High Register
T4CRL	1009H	R/W	00H	Timer 4 Control Low Register

12.5.6 Register description

T4ADRH (Timer 4 A data High Register): 100AH

7	6	5	4	3	2	1	0
T4ADRH7	T4ADRH6	T4ADRH5	T4ADRH4	T4ADRH3	T4ADRH2	T4ADRH1	T4ADRH0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value: FFI							
	T4A	DRH[7:0]	T4 A Data Hig	h Byte			

T4ADRL (Timer 4 A Data Low Register): 100BH

7	6	5	4	3	2	1	0		
T4ADRL7	T4ADRL6	T4ADRL5	T4ADRL4	T4ADRL3	T4ADRL2	T4ADRL1	T4ADRL0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Initial value: FFH								
	T4A	DRL[7:0]	T4 A Data Low	v Byte					

4ADKL[7.0] 14

NOTE: Do not write "0000H" in the T4ADRH/T4ADRL register when PPG mode.

T4BDRH (Timer 4 B Data High Register): 100CH

7	6	5	4	3	2	1	0
T4BDRH7	T4BDRH6	T4BDRH5	T4BDRH4	T4BDRH3	T4BDRH2	T4BDRH1	T4BDRH0
R/W							
						Initial	value: FFH

T4BDRH[7:0] T4 B Data High Byte

T4BDRL (Timer 4 B Data Low Register): 100DH

7	6	5	4	3	2	1	0
T4BDRL7	T4BDRL6	T4BDRL5	T4BDRL4	T4BDRL3	T4BDRL2	T4BDRL1	T4BDRL0
R/W							

Initial value: FFH

T4BDRL[7:0] T4 B Data Low

	7	6	5	4	•	3	2	1	0	
ſ	T4EN	_	T4MS1	T4N	1 S0	_	_	_	T4CC	
Ī	RW	-	R/W	R/	N	-	-	-	RW	
								Initial	value: 00H	
		T4E	N (Control 7	Timer 4					
			()	Timer 4	l disable				
				I	Timer 4	l enable (Cou	unter clear and	l start)		
	T4MS[1:0]			Control T	Timer 4 C	Operation Mo	de			
			٦	F4MS1	T4MS0	Description)			
			()	0	Timer/cour	iter mode (T40	D: toggle at A r	natch)	
			()	1	Capture mo	ode (The A ma	atch interrupt c	an occur)	
				1	0	PPG one-s	hot mode (PW	/M4O)		
				1	1	PPG repea	t mode (PWM	40)		
		T4C	C (Clear Tir	ner 4 Co	ounter				
			()	No effe	ct				
				1	Clear the Timer 4 counter (When write, automatically					
					cleared	l "0" after bei	ng cleared cou	inter)		

T4CRH (Timer 4 Control High Register): 1008H

T4CRL (Timer 4 Control Low Register): 1009H

7	6	5	4	ļ	3	2	1	0	
T4CK2	T4CK1	T4CK0	T4I	FR	_	T4POL	-	T4CNTR	
R/W	R/W	R/W	R/	W	_	RW	_	RW	
							Initial	value: 00H	
	T4C	K[2:0] S	Select Ti	imer 4 c	lock sourc	e. fx is main syst	em clock frequ	ency	
		-	T4CK2	T4CK	1 T4CK0	Description			
		(C	0	0	fx/512			
		(C	0	1	fx/128			
		(C	1	0	fx/32			
		(C	1	1	fx/8			
			1	0	0	fx/4			
		,	1	0	1	fx/2			
			1	1	0	fx/1			
			1	1	1	T3 A Match			
	T4IF	R ۱	When T4 Match Interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit. Writing "1" has no effect.						
		(C	T4 inte	errupt no g	eneration			
			1	T4 inte	errupt gene	eration			
	T4P	OL -	T40/PW	'M4O Po	olarity Sele	ection			
		(C	Start F	ligh (T4O/	PWM4O is low le	evel at disable)		
			1	Start L	_ow (T40/F	PWM4O is high le	evel at disable)		
	T4C	NTR -	Timer 4	Counter	r Read Cor	ntrol			
		(C	No eff	ect				
		1 Load the counter value to the B data register (When write, automatically cleared "0" after being loaded)							

12.6 Timer 5

A 16-bit timer 5 consists of a multiplexer, timer 5 A data high/low register, timer 5 B data high/low register and timer 5 control high/low register (T5ADRH, T5ADRL, T5BDRH, T5BDRL, T5CRH, and T5CRL).

Timer 5 operates in one of the following modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 5 can be a divided clock of a system clock selected from prescaler output. The clock source is selected by a clock selection logic controlled by clock selection bits (T5CK[2:0]).

• TIMER 5 clock source: fX/1, fX/2, fX/4, fX/8, fX/32, fX/128, fX/512 and HSIRC

In capture mode, data is captured into input capture data registers (T5BDRH/T5BDRL) by EINT5. In timer/counter mode, whenever counter value is equal to T5ADRH/L, T5O port toggles. In addition, the TIMER 5 outputs PWM waveform to PWM5O port in the PPG mode.

T5EN	P0FSRH[5:4]	T5MS[1:0]	T5CK[2:0]	Timer 5
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
1	11	10	XXX	16 Bit PPG Mode(one-shot mode)
1	11	11	XXX	16 Bit PPG Mode(repeat mode)

Table 24. TIMER 5 Operating Modes

12.6.1 16-bit timer/counter mode

16-bit timer/counter mode is selected by control registers, and the 16-bit timer/counter has counter registers and data registers as shown in figure 68. The counter register is increased by internal clock input.

Timer 5 can use the input clock with one of 1, 2, 4, 8, 32, 128, 512 and High Frequency Internal Oscillator (HSIRC) prescaler division rates (T5CK[2:0]). When the values of T5CNTH/T5CNTL and T5ADRH/T5ADRL are identical to each other in timer 5, a match signal is generated and the interrupt of Timer 5 occurs. The T5CNTH/T5CNTL values are automatically cleared by the match signal. It can be cleared by software (T5CC) too.

Figure 73. 16-bit Timer/Counter Mode Operation Example

12.6.2 16-bit capture mode

Timer 5 capture mode is set by configuring T5MS[1:0] as '01'. It uses an internal clock as a clock source. Basically, the 16-bit timer 5 capture mode has the same function as the 16-bit timer/counter mode, and the interrupt occurs when T5CNTH/T5CNTL is equal to T5ADRH/T5ADRL. The T5CNTH, T5CNTL values are automatically cleared by a match signal. It can be cleared by software (T5CC) too.

A timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer. Capture result is loaded into T5BDRH/T5BDRL. In the timer 5 capture mode, timer 5 output (T5O) waveform is not available.

According to EIPOL0H registers setting, the external interrupt EINT5 function is selected. EINT5 pin must be set as an input port.

Figure 74. 16-bit Capture Mode of Timer 5

Figure 76. Express Timer Overflow in Capture Mode

12.6.3 16-bit PPG mode

TIMER 5 has a PPG (Programmable Pulse Generation) function. In PPG mode, T5O/PWM5O pin outputs up to 16-bit resolution PWM output. For this function, T5O/PWM5O pin must be configured as a PWM output by setting P0FSRH[5:4] to '11'. Period of the PWM output is determined by T5ADRH/T5ADRL, and duty of the PWM output is determined by T5BDRH/T5BDRL.

Figure 77. 16-bit PPG Mode of Timer 5

Repeat Mode(T5MS = 11b) and "Start High"(T5POL = 0b). Set T5EN	
Counter $X = 0$ 1 2 3 4 5 6 7 8	M-1 0 1 2 3 4
T5ADRH/L M	
T5 Interrupt	
1. T5BDRH/L(5) < T5ADRH/L	
PWM5O B Match	A Match
2. T5BDRH/L >= T5ADRH/L	
PWM5O	A Match
3. T5BDRH/L = "0000H"	
I PWM5O Low Level	A Match
One-shot Mode(T5MS = 10b) and "Start High"(T5POL = 0b).	
Set T5EN —↓	
Counter X 0 1 2 3 4 5 6 7 8	V V. M-1 0
T5ADRH/L M	
T5 Interrupt	
1. T5BDRH/L(5) < T5ADRH/L	
PWM50 B Match	A Match
2. T5BDRH/L >= T5ADRH/L	
PWM5O	A Match
3. T5BDRH/L = "0000H"	<u></u>
PWM5O Low Level	A Match

Figure 78. 16-bit PPG Mode Operation Example

12.6.4 16-bit timer 5 block diagram

In this section, a 16-bit timer 5 is described in a block diagram.

Figure 79. 16-bit Timer 5 Block Diagram

12.6.5 Register map

Table	25	TIMER	5	Register	Man
Table	20.		v	Register	map

Name	Address	Direction	Default	Description		
T5ADRH	1012H	R/W	FFH	Timer 5 A Data High Register		
T5ADRL	1013H	R/W	FFH	Timer 5 A Data Low Register		
T5BDRH	1014H	R/W	FFH	Timer 5 B Data High Register		
T5BDRL	1015H	R/W	FFH	Timer 5 B Data Low Register		
T5CRH	1010H	R/W	00H	Timer 5 Control High Register		
T5CRL	1011H	R/W	00H	Timer 5 Control Low Register		

12.6.6 Register description

T5ADRH (Timer 5 A data High Register): 1012H

	7	6	5	4	3	2	1	0
I	T5ADRH7	T5ADRH6	T5ADRH5	T5ADRH4	T5ADRH3	T5ADRH2	T5ADRH1	T5ADRH0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							Initial	value: FFH
		T5A	DRH[7:0]	T5 A Data Hig	h Byte			

T5ADRL (Timer 5 A Data Low Register): 1013H

	7	6	5	4	3	2	1	0	
•	T5ADRL7	T5ADRL6	T5ADRL5	T5ADRL4	T5ADRL3	T5ADRL2	T5ADRL1	T5ADRL0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	Initial value: FFH								
		T5AI	DRL[7:0]	T5 A Data Low	/ Byte				

NOTE: Do not write "0000H" in the T5ADRH/T5ADRL register when PPG mode.

T5BDRH (Timer 5 B Data High Register): 1014H

7	6	5	4	3	2	1	0	
T5BDRH7	T5BDRH6	T5BDRH5	T5BDRH4	T5BDRH3	T5BDRH2	T5BDRH1	T5BDRH0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value:								

T5BDRH[7:0] T5 B Data High Byte

T5BDRL (Timer 5 B Data Low Register): 1015H

7	6	5	4	3	2	1	0
T5BDRL7	T5BDRL6	T5BDRL5	T5BDRL4	T5BDRL3	T5BDRL2	T5BDRL1	T5BDRL0
R/W							

Initial value: FFH

T5BDRL[7:0] T5 B Data Low

7	6	5	4	3	2	1	0			
T5EN	-	T5MS1	T5MS0	-	-	-	T5CC			
RW	-	R/W	RW	-	-	-	RW			
						Initial	value: 00H			
	T5E	N C	Control Time	r 5						
		0	Tin	ner 5 disable						
		1	Tin	ner 5 enable (Co	unter clear and	d start)				
	T5M	S[1:0] C	Control Timer 5 Operation Mode							
		Т	5MS1 T5	MS0 Description	ı					
		0	0	Timer/cour	nter mode (T50	D: toggle at A r	natch)			
		0	1	Capture m	ode (The A ma	atch interrupt c	an occur)			
		1	0	PPG one-s	shot mode (PW	/M5O)				
		1	1	PPG repea	at mode (PWM	50)				
	T5C	c c	lear Timer	5 Counter						
		0	No	effect						
		1	Cle	ar the Timer 5 co ared "0" after bei	ounter (When v ng cleared cou	write, automati ınter)	cally			

T5CRH (Timer 5 Control High Register): 1010H

T5CRL (Timer 5 Control Low Register): 1011H

7	6	5	4	ļ	3	2	1	0	
T5CK2	T5CK1	T5CK0	T5I	FR	_	T5POL	-	T5CNTR	
R/W	R/W	R/W	R/	W	_	RW	-	RW	
							Initial	value: 00H	
	T5C	K[2:0] S	Select Ti	lect Timer 5 clock source. fx is main system clock frequency					
		-	T4CK2	T4CK′	1 T4CK0	Description			
		(C	0	0	fx/512			
		(C	0	1	fx/128			
		(C	1	0	fx/32			
		(C	1	1	fx/8			
			1	0	0	fx/4			
			1	0	1	fx/2			
			1	1	0	fx/1			
			1	1	1	HSIRC Direct (3	82MHz)		
	T5IF	R ۱	When T5 Match Interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit. Writing "1" has no effect.						
		(C	T5 inte	errupt no g	eneration			
			1	T5 inte	errupt gene	eration			
	T5P	OL -	T5O/PW	M50 Po	plarity Sele	ction			
		(C	Start F	ligh (T5O/	PWM5O is low le	vel at disable)		
			1	Start L	.ow (T5O/F	PWM5O is high le	evel at disable)		
	T5C	NTR ⁻	Timer 5	Counter	Read Cor	ntrol			
					ect				
			1	Load the counter value to the B data register (When write, automatically cleared "0" after being loaded)					

13 Buzzer driver

A buzzer of A96G140/A96G148/A96A148 consists of 8-bit counter, a buzzer data register (BUZDR), and a buzzer control register (BUZCR). It outputs square wave (61.035Hz to 125.0KHz @ 8MHz) through P13/AN10/EC1/BUZO pin, and its buzzer data register (BUZDR) controls the buzzer frequency (refer to the following expression). In a buzzer control register (BUZCR), BUCK[1:0] bits select a source clock divided by prescaler.

Table 26. Buzzer Frequency at 8MHz

 $f_{BUZ}(Hz) = \frac{\text{Oscillator Frequency}}{2 \times \text{Prescaler Ratio} \times (BUZDR + 1)}$

BUZDR[7:0]	Buzzer Frequency (KHz)						
	BUZCR[2:1]=00	BUZCR[2:1]=01	BUZCR[2:1]=10	BUZCR[2:1]=11			
0000_0000	125KHz	62.5KHz	31.25KHz	15.625KHz			
0000_0001	62.5KHz	31.25KHz	31.25KHz 15.625KHz				
1111_1101	492.126Hz	246.063Hz	123.031Hz	61.515Hz			
1111_1110	490.196Hz	245.098Hz	122.549Hz	61.274Hz			
1111_111	488.281Hz	244.141Hz	122.07Hz	61.035Hz			

13.1 Buzzer driver block diagram

Figure 80. Buzzer Driver Block Diagram

13.2 Register map

Table 27. Buzzer Driver Register Map									
Name	Address	Direction	Default	Description					
BUZDR	BUZDR 8FH R/W		FFH	Buzzer Data Register					
BUZCR 97H		R/W	00H	Buzzer Control Register					

Table 27. Buzzer Driver Register Map

13.3 Register description

BUZDR (Buzzer Data Register): 8FH

7	6	5	4	3	2	1	0
BUZDR7	BUZDR6	BUZDR5	BUZDR4	BUZDR3	BUZDR2	BUZDR1	BUZDR0
RW	RW	RW	RW	RW	RW	RW	RW
	BUZ	DR[7:0] T II	This bits contro ts resolution is	l the Buzzer fre 00H ~ FFH	equency	Initial	value: FFH

BUZCR (Buzzer Control Register): 97H

7	6	5	4		3	2	1	0
-	-	-	-		_	BUCK1	BUCK0	BUZEN
-	-	-	-		-	RW	RW	RW
							Initial	value: 00H
	BUC	CK[1:0]	Buzzer D	river Sou	urce Clock	Selection		
			BUCK1	BUCK) Descrip	otion		
			0	0	fx/32			
			0	1	fx/64			
			1	0	fx/128			
			1	1	fx/256			
	BUZ	ΣEN.	Buzzer D	river Ope	eration Con	trol		
			0	Buzzer	Driver disa	ble		
			1	Buzzer	Driver ena	ble		
			NOTE: fx	: System	n clock osci	llation frequen	cy.	

14 12-bit ADC

Analog-to-digital converter (ADC) of A96G140/A96G148/A96A148 allows conversion of an analog input signal to corresponding 12-bit digital value. This A/D module has eight analog inputs. Output of the multiplexer becomes input into the converter which generates the result through successive approximation.

The A/D module has four registers which are the A/D converter control high register (ADCCRH), A/D converter control low register (ADCCRL), A/D converter data high register (ADCDRH), and A/D converter data low register (ADCDRL).

ADSEL[3:0] bits are used to select channels to be converted. To execute A/D conversion, TRIG[2:0] bits should be set to 'xxx'. Registers ADCDRH and ADCDRL contain the result of A/D conversion. When the conversion is completed, the result is loaded into ADCDRH and ADCDRL, A/D conversion status bit AFLAG is set to '1', and A/D interrupt is set. During the A/D conversion, AFLAG bit is read as '0'.

14.1 Conversion timing

A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 12 clocks to set up A/D conversion. Therefore, total of 58 clocks are required to complete a 12-bit conversion: For example, when fxx/8 is selected for conversion clock with a 12MHz fxx clock frequency, one clock cycle is 0.66µs, and each bit conversion requires 4 clocks. The conversion rate is calculated as follows:

4 clocks/bit × 12 bits + set-up time = 60 clocks ADC Conversion Time = ADCLK * 60 cycles

Please remember that the A/D converter requires at least 7.5us for conversion time, so the conversion time must be set bigger than 7.5us.

14.2 Block diagram

In this section, the 12-bit ADC is described in a block diagram, and an analog input pin and a power pin with capacitors respectively are introduced.

Figure 81. 12-bit ADC Block Diagram

Figure 82. A/D Analog Input Pin with a Capacitor

Figure 83. A/D Power (AVREF) Pin with a Capacitor

14.3 ADC operation

In this section, control registers and align bits are introduced in figure 80, and ADC operation flow sequence is introduced in figure 81.

Figure 84. Control Registers and Align Bits

Figure 85. ADC Operation Flow Sequence

14.4 Register map

Table	28.	ADC	Register	Map
TUDIC	_ U.		register	map

			<u> </u>	•
Name	Address	Direction	Default	Description
ADCDRH	9FH	R	xxH	A/D Converter Data High Register
ADCDRL	9EH	R	xxH	A/D Converter Data Low Register
ADCCRH	9DH	R/W	01H	A/D Converter Control High Register
ADCCRL	9CH	R/W	00H	A/D Converter Control Low Register

14.5 Register description

ADCDRH (A/D Converter Data High Register):9FH

7	6	5	4	3	2	1	0
ADDM11	ADDM10	ADDM9	ADDM8	ADDM7	ADDM6	ADDM5	ADDM4
				ADDL11	ADDL10	ADDL9	ADDL8
R	R	R	R	R	R	R	R

Initial value: xxH

ADDM[11:4] ADDL[11:8]

MSB align, A/D Converter High Data (8-bit) LSB align, A/D Converter High Data (4-bit)

ADCDRL (A/D Converter Data Low Register): 9EH

7	6	5	4	3	2	1	0
ADDM3 ADDL7	ADDM2 ADDL6	ADDM1 ADDL5	ADDM0 ADDL4	ADDL3	ADDL2	ADDL1	ADDL0
R	R	R	R	R-	R	R	R
						Initial	value: xxH

ADDM[3:0] ADDL[7:0] MSB align, A/D Converter Low Data (4-bit) LSB align, A/D Converter Low Data (8-bit)

7	6	5	4	3		2	1	0		
ADCIFR	IREF	TRIG2	TRIG1	TRIG	0 /	ALIGN	CKSEL1	CKSEL0		
R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W		
							Initial	value: 01H		
	ADCIFR		When ADC interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or auto clear by INT_ACK signal. Writing "1" has no effect.							
			0	ADC Interru	ipt no ge	neration				
			1	ADC Interru	ipt gener	ation				
	IRE	=	Select interr	nal voltage r	eference.					
			0	External inp	out signal	source se	elect			
			1	Test only						
TRIG[2:0]			A/D Trigger	Signal Sele	ction					
			TRIG2	TRIG1	TRIG0	Descrip	otion			
			0	0	0	ADST				
			0	0	1	Timer 1	A match sign	al		
			0	1	0	Timer 3	Timer 3 A match signal			
			0	1	1	EXTIN	EXTINT0~7			
			1	0	0	EXTIN	Г8			
			1	0	1	Not use	ed			
				Other Values			Not used			
	ALIC	ΞN	A/D Converter data align selection.							
			0 MSB align (ADCDRH[7:0], ADCDRL[7:4])							
			1 LSB align (ADCRDH[3:0], ADCDRL[7:0])							
	CKS	EL[1:0]	A/D Conver	ter Clock sel	ection					
			CKSEL1	CKSEL0	Descrip	tion				
			0	0	fx/1					
			0	1	fx/2					
			1	0	fx/4					
			1	1	fx/8					
	NOT	ES:								

ADCCRH (A/D Converter High Register): 9DH

1. fx : system clock

2. ADC clock should use below 8MHz

ADCCRL (A/D Converter Counter Low Register): 9CH

7	6	5	4	3	2	1	0			
STBY	ADST	REFSEL	AFLAG	ADSEL3	ADSEL2	ADSEL1	ADSEL0			
RW	RW	RW	R	RW	RW	RW	RW			
						Initial	value: 00H			
	STB	Y (Control Operat	on of A/D						
		(The ADC mod	ule is automation	cally disabled	at stop mode)				
		(D AD	C module disat	ble					
		1	1 ADC module enable							
	ADS	ST (Control A/D Conversion stop/start.							
		(D No	effect						
		1	1 AD	C Conversion S	Start and auto	clear				
	REF	SEL A	A/D Converter	Reference Sele	ection					
		(D Inte	rnal Reference	(VDD)					
		1	1 Ext	ernal Referenc	e (AVREF)					
	AFL	AG A	A/D Converter bit is set to '0' o	Operation State or when the CP	e (This bit is c U is at STOP	leared to '0' wh mode)	en the STBY			
		(D Dur	ing A/D Conve	rsion					
		1	1 A/C	Conversion fir	nished					
	ADS	SEL[3:0] A	A/D Converter	input selection						
		ļ	ADSEL3 AD	SEL2 ADSEL	1 ADSEL0	Description				
		(0 C	0	0	AN0				
		(0 C	0	1	AN1				
		(0 0	1	0	AN2				
		(0 C	1	1	AN3				
		(D 1	0	0	AN4				
		(D 1	0	1	AN5				
		(D 1	1	0	AN6				
		(D 1	1	1	AN7				
		1	1 0	0	0	AN8				
		1	1 0	0	1	AN9				
		1	1 0	1	0	AN10				
		1	1 0	1	1	AN11				
		1	1 1	0	0	AN12				
		1	1 1	0	1	AN13				
		1	1 1	1	0	AN14				
		1	1 1	1	1	AN15				

15 USI (USART + SPI + I2C)

USI stands for the combination of USART, SPI and I2C. A96G140/A96G148/A96A148 has two USI function blocks, USI0 and USI1, which are identical to each other functionally. Each USI block consists of USI control registers 1/2/3/4, USI status registers 1/2, USI baud-rate generation register, USI data register, USI SDA hold time register, USI SCL high period register, USI SCL low period register, and USI slave address register (USInCR1, USInCR2, USInCR3, USInCR4, USInST1, USInST2, USInBD, USInDR, USInSDHR, USInSCHR, USInSCLR, USInSAR). The 'n' means '0' or '1'.

USI operates in one of the following modes selected by USIn selection bits (USInMS[1:0]):

- Asynchronous mode (UART)
- Synchronous mode (USART)
- SPI mode
- I2C mode

15.1 USIn UART mode

Universal synchronous and asynchronous serial receiver and transmitter (USART) are highly flexible serial communication devices. Main features are listed below:

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data bits and 1 or 2 Stop bits
- Odd or Even Parity Generation and Parity Check are Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Three Separate Interrupts on TX Completion, TX Data Register Empty and RX Completion
- Double Speed Asynchronous communication mode

The USIn comprises clock generator, transmitter and receiver. Clock generation logic consists of synchronization logic for external clock input used by synchronizing or SPI slave operation, and the baud rate generator for asynchronous or master (synchronous or SPI) operation.

Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. A write buffer allows continuous transfer of data without any delay between frames.

Receiver is the most complex part of the UART module due to its clock and data recovery units. The recovery unit is used for asynchronous data reception. In addition to the recovery unit, the receiver includes a parity checker, a shift register, a two-level receive FIFO (USInDR) and control logic. The receiver supports the same frame formats as the transmitter and can detect frame error, data overrun and parity errors.

15.2 USIn UART block diagram

Figure 86. USIn USART Block Diagram (n = 0 and 1)

15.3 USIn clock generation

Figure 87. Clock Generation Block Diagram (USIn)

Clock generation logic generates base clock signal for the transmitter and the receiver. The USIn supports four modes of clock operation such as normal asynchronous mode, double speed asynchronous mode, master synchronous mode and slave synchronous mode.

The clock generation scheme for master SPI mode and slave SPI mode is the same as master synchronous and slave synchronous operation mode. The USInMS[1:0] bits in USInCR1 register selects one from asynchronous operation and synchronous operation. Asynchronous double speed mode is controlled by the DBLSn bit in the USInCR2 register. The MASTERn bit in USInCR3 register controls whether the clock source is internal (master mode, output pin) or external (slave mode, input pin). The SCKn pin is active only when the USIn operates in synchronous or SPI mode.

Table 29 shows the equations for calculating the baud rate (in bps).

Operating Mode	Equation for Calculating Baud Rate
Asynchronous Normal Mode (DBLSn=0)	Baud Rate = $\frac{fx}{16(USInRD + 1)}$
	10(03IIBD + 1)
Asynchronous Double Speed Mode (DBLSn=1)	Baud Rate = $\frac{fx}{8(USInBD + 1)}$
Synchronous or SPI Master Mode	Baud Rate = $\frac{fx}{2(USInBD + 1)}$

Table 29. Equations for Calculating USIn Baud Rate Register Setting

15.4 USIn external clock (SCKn)

External clocking is used in synchronous mode of operation. External clock input from the SCKn pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must be passed through an edge detector before it is used by the transmitter and receiver. This process introduces two CPU clock period delay. The maximum frequency of the external SCKn pin is limited up-to 1MHz.

15.5 USIn synchronous mode operation

When synchronous mode or SPI mode is used, SCKn pin will be used as either clock input (slave) or clock output (master).Data sampling and transmitter are issued on the different edge of SCKn clock respectively. For example, if data input on RXDn (MISOn in SPI mode) pin is sampled on the rising edge of SCKn clock, data output on TXDn (MOSIn in SPI mode) pin is altered on the falling edge.

CPOLn bit in USInCR1 register selects which SCKn clock edge will be used both for data sampling and data change. As shown in figure 84, when the CPOLn is zero, data will be changed at rising SCKn edge and sampled at falling SCKn edge.

Figure 88. Synchronous Mode SCKn Timing (USIn)

15.6 USIn UART data format

A serial frame is defined to have one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error detection. USART supports 30 combinations of the followings as a valid frame format:

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with a start bit followed by the least significant data bit (LSB). The next data bits, up to nine, are succeeding, ending with the most significant bit (MSB). If parity function is enabled, parity bit is inserted between the last data bit and the stop bit.

A high-to-low transition on data pin is considered as start bit. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. Figure 85 shows a possible combination of the frame formats. Bits inside brackets are optional.

Figure 89. Frame Formats (USIn)

1 data frame consists of the following bits

- Idle: No communication on communication line (TXDn/RXDn)
- St: Start bit (Low)
- Dn: Data bits (0~8)
- Parity bit: Even parity, odd parity, no parity
- Stop bit(s): 1 bit or 2 bits

A frame format used by the UART is determined by the USInS[2:0], USInPM[1:0] bits in USInCR1 register and USInSB bit in USInCR3register. The transmitter and the receiver use the same figures.

Parity bit is calculated by doing an exclusive-OR of all the data bits. If odd parity is used, result of the exclusive-OR is inverted. The parity bit is located between the MSB and the first stop bit of a serial frame.

- Peven = Dn-1 ^ ... ^ D3 ^ D2 ^ D1 ^ D0 ^ 0
- P_{odd} = Dn-1 ^ ... ^ D3 ^ D2 ^ D1 ^ D0 ^ 1
- Peven: Parity bit using even parity
- Podd: Parity bit using odd parity
- Dn: Data bit n of the character

15.8 USIn UART transmitter

The UART transmitter is enabled by setting the TXEn bit in USInCR2 register. When the Transmitter is enabled, the TXDn pin should be set to TXDn function for the serial output pin of UART by the P4FSR[3:2] and P2FSR[1:0]. The baud-rate, operation mode and frame format must be set up once before doing any transmission. In synchronous operation mode, the SCKn pin is used as transmission clock, so it should be selected to do SCKn function by P4FSR[5:4] and P2FSR[3:2].

15.8.1 USIn UART sending TX data

A data transmission is initiated by loading the transmit buffer (USInDRregister I/O location) with the data to be transmitted. The data be written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame according to the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode, the ninth bit must be written to the USInTX8 bit in USInCR3 register before it is loaded to the transmit buffer (USInDR register).

15.8.2 USIn UART transmitter flag and interrupt

The USART transmitter has two flags which indicate its state. One is USART data register empty flag (DREn) and the other is transmit completion flag (TXCn). Both flags can be interrupt sources.

DREn flag indicates whether the transmit buffer is ready to receive new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted but has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prohibited.

When the data register empty interrupt enable (DRIEn) bit in USInCR2 register is set and the global interrupt is enabled, USInST1 status register empty interrupt is generated while DREn flag is set.

The transmit complete (TXCn) flag bit is set when the entire frame in the transmit shift register has been shifted out and there is no more data in the transmit buffer.

The TXCn flag is automatically cleared when the transmit complete interrupt serve routine is executed, or it can be cleared by writing '0' to TXCn bit in USInST1 register.

When the transmit complete interrupt enable (TXCIEn) bit in USInCR2 register is set and the global interrupt is enabled, UART transmit complete interrupt is generated while TXCn flag is set.

15.8.3 USIn UART parity generator

The parity generator calculates the parity bit for the serial frame data to be sent. When parity bit is enabled (USInPM1=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the frame to be sent.

15.8.4 USIn UART disabling transmitter

Disabling the transmitter by clearing the TXEn bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXDn pin can be used as a normal general purpose I/O (GPIO).

15.9 USIn UART receiver

The USART receiver is enabled by setting the RXEn bit in the USInCR2register. When the receiver is enabled, the RXDn pin should be set to RXDn function for the serial input pin of UART by P4FSR[1:0] and P4FSR[1:0]. The baud-rate, mode of operation and frame format must be set before serial reception. In synchronous or SPI operation mode the SCKn pin is used as transfer clock input, so it should be selected to do SCKn function by P4FSR[5:4] and P2FSR[3:2]. In SPI operation mode the SSn input pin in slave mode or can be configured as SSn output pin in master mode. This can be done by setting USInSSEN bit in USInCR3 register.

15.9.1 USIn UART receiver RX data

When UART is in synchronous or asynchronous operation mode, the receiver starts data reception when it detects a valid start bit (LOW) on RXD0 pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of SCKn (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's the second stop bit in the frame, the second stop bit is ignored by the receiver. That is, receiving the first stop bit means that a complete serial frame is presented in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the USInDR register.

If 9-bit characters are used (USInS[2:0] = "111"), the ninth bit is stored in the USInRX8 bit position in the USInCR3 register. The ninth bit must be read from the USInRX8 bit before reading the low 8 bits from the USInDR register. Likewise, the error flags FEn, DORn, PEn must be read before reading the data from USInDR register. It's because the error flags are stored in the same FIFO position of the receive buffer.

15.9.2 USIn UART receiver flag and interrupt

The UART receiver has one flag that indicates the receiver state.

The receive complete (RXCn) flag indicates whether there are unread data in the receive buffer. This flag is set when there is unread data in the receive buffer and cleared when the receive buffer is empty. If the receiver is disabled (RXEn=0), the receiver buffer is flushed and the RXCn flag is cleared.

When the receive complete interrupt enable (RXCIEn) bit in the USInCR2 register is set and global interrupt is enabled, the UART receiver complete interrupt is generated while RXCn flag is set.

The UART receiver has three error flags which are frame error (FEn), data overrun (DORn) and parity error (PEn). These error flags can be read from the USInST1 register. As the received data is stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from USInDR register, read the USInST1 register first which contains error flags.

The frame error (FEn) flag indicates the state of the first stop bit. The FEn flag is '0' when the stop bit was correctly detected as "1", and the FEn flag is "1" when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

The data overrun (DORn) flag indicates data loss due to a receive buffer full condition. DORn occurs when the receive buffer is full, and another new data is presented in the receive shift register which are to be stored into the receive buffer. After the DORn flag is set, all the incoming data are lost. To avoid data loss or clear this flag, read the receive buffer.

The parity error (PEn) flag indicates that the frame in the receive buffer had a parity error when received. If parity check function is not enabled (USInPM1=0), the PE bit is always read "0".

15.9.3 USIn UART parity checker

If parity bit is enabled (USInPM1=1), the Parity Checker calculates the parity of the data bits in incoming frame and compares the result with the parity bit from the received serial frame.

15.9.4 USIn UART disabling receiver

In contrast to transmitter, disabling the Receiver by clearing RXEn bit makes the Receiver inactive immediately. When the receiver is disabled, the receiver flushes the receive buffer, the remaining data in the buffer is all reset, and the RXDn pin can be used as a normal general purpose I/O (GPIO).

15.9.5 USIn Asynchronous data reception

To receive asynchronous data frame, the UART includes a clock and data recovery unit. The clock recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXDn pin.

The data recovery logic does sampling and low pass filtering the incoming bits, and removing the noise of RXDn pin.

The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times of the baud-rate in normal mode and 8 times the baud-rate for double speed mode (DBLSn=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the double speed mode.

Figure 90. Asynchronous Start Bit Sampling (USIn)

When the receiver is enabled (RXEn=1), the clock recovery logic tries to find a high-to-low transition on the RXDn line, the start bit condition. After detecting high to low transition on RXDn line, the clock recovery logic uses samples 8, 9 and 10 for normal mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost same to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for normal mode and 8 times for double speed mode, and uses sample 8, 9 and 10 to decide data value. If more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have high levels, the received bit is considered to a logic '1'.

The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

Figure 91. Asynchronous Sampling of Data and Parity Bit (USIn)

The process for detecting stop bit is same as clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected, else a frame error (FEn) flag is set. After deciding whether the first stop bit is valid or not, the Receiver goes to idle state and monitors the RXDn line to check a valid high to low transition is detected (start bit detection).

Figure 92. Stop Bit Sampling and Next Start Bit Sampling (USIn)

15.10 USIn SPI mode

The USIn can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full duplex, three-wire synchronous data transfer
- Master and slave operation
- Supports all four SPIn modes of operation (mode 0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (USInMS[1:0]="11"), the slave select (SSn) pin becomes active LOW input in slave mode operation, or can be output in master mode operation if USInSSEN bit is set to '0'.

Note that during SPI mode of operation, the pin RXDn is renamed as MISOn and TXDn is renamed as MOSIn for compatibility to other SPI devices.

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the USIn has a clock polarity bit (CPOLn) and a clock phase control bit (CPHAn) to select one of four clock formats for data transfers. CPOLn selectively insert an inverter in series with the clock. CPHAn chooses between two different clock phase relationships between the clock and data. Note that CPHAn and CPOLn bits in USInCR1 register have different meanings according to the USInMS[1:0] bits which decides the operating mode of USIn.

Table 29 shows four combinations of CPOLn and CPHAn for SPI mode 0, 1, 2, and 3.

······								
SPI Mode	CPOLn	CPHAn	Leading Edge	Trailing Edge				
0	0	0	Sample (Rising)	Setup (Falling)				
1	0	1	Setup (Rising)	Sample (Falling)				
2	1	0	Sample (Falling)	Setup (Rising)				
3	1	1	Setup (Falling)	Sample (Rising)				

Table 30. CPOLn Functionality

Figure 93. USIn SPI Clock Formats when CPHAn = 0

When CPHAn = 0, the slave begins to drive its MISOn output with the first data bit value when SSn goes to active low. The first SCKn edge causes both the master and the slave to sample the data bit value on their MISOn and MOSIn inputs, respectively. At the second SCKn edge, the USIn shifts the second data bit value out to the MOSIn and MISOn outputs of the master and slave, respectively. Unlike the case of CPHAn=1, when CPHAn=0, the slave's SSn input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SSn input.

Figure 94. USIn SPI Clock Formats when CPHAn = 1

When CPHAn = 1, the slave begins to drive its MISOn output when SSn goes active low, but the data is not defined until the first SCKn edge. The first SCKn edge shifts the first bit of data from the shifter onto the MOSIn output of the master and the MISOn output of the slave. The next SCKn edge causes both the master and slave to sample the data bit value on their MISOn and MOSIn inputs, respectively. At the third SCKn edge, the USIn shifts the second data bit value out to the MOSIn and MISOn output of the master and slave respectively. When CPHAn=1, the slave's SSn input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USIn resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USIn Data Register Empty flag (DREn=1) and then writing a byte of data to the USInDR Register.

In master mode of operation, even if transmission is not enabled (TXEn=0), writing data to the USInDR register is necessary because the clock SCKn is generated from transmitter block.

15.12 USIn SPI block diagram

Figure 95. USIn SPI Block Diagram (n = 0 and 1)

15.13 USIn I2C mode

The USIn can be set to operate in industrial standard serial communication protocols mode. The I2C mode uses 2 bus lines serial data line (SDAn) and serial clock line (SCLn) to exchange data. Because both SDAn and SCLn lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I2C bus standard
- Multi-master operation
- Up to 400kHz data transfer read speed
- 7 bit address
- Both master and slave operation
- Bus busy detection

15.14 USIn I2C bit transfer

The data on the SDAn line must be stable during HIGH period of the clock, SCLn. The HIGH or LOW state of the data line can only change when the clock signal on the SCLn line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

Figure 96. Bit Transfer on the I2C-Bus (USIn)

15.15 USIn I2C start/ repeated start/ stop

One master can issue a START (S) condition to notice other devices connected to the SCLn, SDAn lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

A high to low transition on the SDAn line while SCLn is high defines a START (S) condition.

A low to high transition on the SDAn line while SCLn is high defines a STOP (P) condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, i.e., the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

Figure 97. START and STOP Condition (USIn)

15.16 USIn I2C data transfer

Every byte put on the SDAn line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCLn LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCLn.

Figure 98. Data Transfer on the I2C-Bus (USIn)

15.17 USIn I2C acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDAn line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDAn line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDAn line (Data Packet).

The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

Figure 99. Acknowledge on the I2C-Bus (USIn)

15.18 USIn I2C synchronization/ arbitration

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCLn line. This means that a HIGH to LOW transition on the SCLn line will cause the devices concerned to start counting off their LOW period and it will hold the SCLn line in that state until the clock HIGH state is reached. However the LOW to HIGH transition of this clock may not change the state of the SCLn line if another clock is still within its LOW period. In this way, a synchronized SCLn clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. Arbitration takes place on the SDAn line, while the SCLn line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output state because the level on the bus doesn't correspond to its own level. Arbitration continues for many bits until a winning master gets the ownership of I2C bus. Its first stage is comparison of the address bits.

Figure 100. Clock Synchronization during Arbitration Procedure (USIn)

Figure 101. Arbitration Procedure of Two Masters (USIn)

15.19 USIn I2C operation

The I2C is byte-oriented and interrupt based. Interrupts are issued after all bus events except for a transmission of a START condition. Because the I2C is interrupt based, the application software is free to carry on other operations during an I2C byte transfer.

Note that when an I2C interrupt is generated, IICnIFR flag in USInCR4 register is set, it is cleared by writing any value to USInST2. When I2C interrupt occurs, the SCLn line is hold LOW until writing any value to USInST2. When the IICnIFR flag is set, the USInST2 contains a value indicating the current state of the I2C bus. According to the value in USInST2, software can decide what to do next.

I2C can operate in 4 modes by configuring master/slave, transmitter/receiver. The operating mode is configured by a winning master. A more detailed explanation follows below.

15.19.1 USIn I2C master transmitter

To operate I2C in master transmitter, follow the recommended steps below:

- 1. Enable I2C by setting USInMS[1:0] bits in USInCR1 and USInEN bit in USInCR2. This provides main clock to the peripheral.
- Load SLAn+W into the USInDR where SLAn is address of slave device and W is transfer direction from the viewpoint of the master. For master transmitter, W is '0'. Note that USInDR is used for both address and data.
- 3. Configure baud rate by writing desired value to both USInSCLR and USInSCHR for the Low and High period of SCLn line.
- Configure the USInSDHR to decide when SDAn changes value from falling edge of SCLn. If SDAn should change in the middle of SCLn LOW period, load half the value of USInSCLR to the USInSDHR.
- 5. Set the STARTCn bit in USInCR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTCn bit is set, 8-bit data in USInDR is transmitted out according to the baud-rate.
- 6. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCLn. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOSTn bit in USInST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOSTn bit in USInST2 is set, the ACKnEN bit in USInCR4 must be set and the received 7-bit address must equal to the USInSLA[6:0] bits in USInSAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCLn LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases regardless of the reception of ACK signal from slave:

Case 1: Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USInDR. Case 2: Master stops data transfer even if it receives ACK signal from slave. In this case,

set the STOPCn bit in USInCR4.

Case 3: Master transmits repeated START condition with not checking ACK signal. In this case, load SLAn+R/W into the USInDR and set STARTCn bit in USInCR4.

After doing one of the actions above, write any arbitrary to USInST2 to release SCLn line. For the case 1, move to step 7. For the case 2, move to step 9 to handle STOP interrupt. For the case 3, move to step 6 after transmitting the data in USInDR and if transfer direction bit is '1' go to master receiver section.

- 7. 1-Byte of data is being transmitted. During data transfer, bus arbitration continues.
- 8. This is ACK signal processing stage for data packet transmitted by master. I2C holds the SCLn LOW. When I2C loses bus mastership while transmitting data arbitrating other masters, the MLOSTn bit in USInST2 is set. If then, I2C waits in idle state. When the data in USInDR is transmitted completely, I2C generates TENDn interrupt.

I2C can choose one of the following cases regardless of the reception of ACK signal from slave:

Case 1: Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USInDR. Case 2: Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPCn bit in USInCR4.

Case 3: Master transmits repeated START condition with not checking ACK signal. In this case, load SLAn+R/W into the USInDR and set the STARTCn bit in USInCR4.

After doing one of the actions above, write any arbitrary to USInST2 to release SCLn line. For the case 1, move to step 7. For the case 2, move to step 9 to handle STOP interrupt. For the case 3, move to step 6 after transmitting the data in USInDR, and if transfer direction bit is '1' go to master receiver section.

9. This is the final step for master transmitter function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USInST2, write any value to USInST2. After this, I2C enters idle state.

15.19.2 USIn I2C master receiver

To operate I2C in master receiver, follow the recommended steps below:

- 1. Enable I2C by setting USInMS[1:0] bits in USInCR1and USInEN bit in USInCR2. This provides main clock to the peripheral.
- Load SLAn+R into the USInDR where SLA is address of slave device and R is transfer direction from the viewpoint of the master. For master receiver, R is '1'. Note that USInDR is used for both address and data.
- 3. Configure baud rate by writing desired value to both USInSCLR and USInSCHR for the Low and High period of SCLn line.
- Configure the USInSDHR to decide when SDAn changes value from falling edge of SCLn. If SDAn should change in the middle of SCLn LOW period, load half the value of USInSCLR to the USInSDHR.
- 5. Set the STARTCn bit in USInCR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTCn bit is set, 8-bit data in USInDR is transmitted out according to the baud-rate.
- 6. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCLn. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOSTn bit in USInST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOSTn bit in USInST2 is set, the ACKnEN bit in USInCR4 must be set and the received 7-bit address must equal to the USInSLA[6:0] bits in USInSAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCLn LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases according to the reception of ACK signal from slave:

Case 1: Master receives ACK signal from slave, so continues data transfer because slave can prepare and transmit more data to master. Configure ACKnEN bit in USInCR4 to decide whether I2C ACKnowledges the next data to be received or not.

Case 2: Master stops data transfer because it receives no ACK signal from slave. In this case, set the STOPCn bit in USInCR4.

Case 3: Master transmits repeated START condition due to no ACK signal from slave. In this case, load SLAn+R/W into the USInDR and set STARTCn bit in USInCR4.

After doing one of the actions above, write arbitrary value to USInST2 to release SCLn line. For the case 1, move to step 7. For the case 2, move to step 9 to handle STOP interrupt. For the case 3, move to step 6 after transmitting the data in USInDR and if transfer direction bit is '0' go to master transmitter section.

7. 1-Byte of data is being received.

8. This is ACK signal processing stage for data packet transmitted by slave. I2C holds the SCLn LOW. When 1-Byte of data is received completely, I2C generates TENDn interrupt.

I2C can choose one of the following cases according to the RXACKn flag in USInST2:

Case 1: Master continues receiving data from slave. To do this, set ACKnEN bit in USInCR4 to ACKnowledge the next data to be received.

Case 2: Master wants to terminate data transfer when it receives next data by not generating ACK signal. This can be done by clearing ACKnEN bit in USInCR4.

Case 3: Because no ACK signal is detected, master terminates data transfer. In this case, set the STOPCn bit in USInCR4.

Case 4: No ACK signal is detected, and master transmits repeated START condition. In this case, load SLAn+R/W into the USInDR and set the STARTCn bit in USInCR4.

After doing one of the actions above, write arbitrary value to USInST2 to release SCLn line. For the case 1 and case 2, move to step 7. For the case 3, move to step 9 to handle STOP interrupt. For the case 4, move to step 6 after transmitting the data in USInDR, and if transfer direction bit is '0' go to master transmitter section.

9. This is the final step for master receiver function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USInST2, write any value to USInST2. After this, I2C enters idle state.

15.19.3 USIn I2C slave transmitter

To operate I2C in slave transmitter, follow the recommended steps below:

- 1. If the main operating clock (SCLK) of the system is slower than that of SCLn, load value 0x00 into USInSDHR to make SDAn change within one system clock period from the falling edge of SCLn. Note that the hold time of SDAn is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USInSDHR. When the hold time of SDAn is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 2. Enable I2C by setting USInMS[1:0] bits in USInCR1, IICnIEbit in USInCR4 and USInEN bit in USInCR2. This provides main clock to the peripheral.
- 3. When a START condition is detected, I2C receives one byte of data and compares it with USInSLA[6:0] bits in USInSAR. If the GCALLn bit in USInSAR is enabled, I2C compares the received data with value 0x00, the general call address.
- 4. If the received address does not equal to USInSLA[6:0] bits in USInSAR, I2C enters idle state i.e., waits for another START condition. Else if the address equals to USInSLA[6:0] bits and the ACKnEN bit is enabled, I2C generates SSELn interrupt and the SCLn line is held LOW. Note that even if the address equals to USInSLA[6:0] bits, when the ACKnEN bit is disabled, I2C enters idle state. When SSELn interrupt occurs, load transmit data to USInDR and write arbitrary value to USInST2 to release SCLn line.
- 5. 1-Byte of data is being transmitted.
- 6. In this step, I2C generates TENDn interrupt and holds the SCLn line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

Case 1: No ACK signal is detected and I2C waits STOP or repeated START condition. Case 2: ACK signal from master is detected. Load data to transmit into USInDR. After doing one of the actions above, write arbitrary value to USInST2 to release SCLn line. For the case 1, move to step 7 to terminate communication. For the case 2, move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

7. This is the final step for slave transmitter function of I2C, handling STOP interrupt. The STOPCn bit indicates that data transfer between master and slave is over. To clear USInST2, write any value to USInST2. After this, I2C enters idle state.

15.19.4 USIn I2C slave receiver

To operate I2C in slave receiver, follow the recommended steps below:

- 1. If the main operating clock (SCLK) of the system is slower than that of SCLn, load value 0x00 into USInSDHR to make SDAn change within one system clock period from the falling edge of SCLn. Note that the hold time of SDAn is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USInSDHR. When the hold time of SDAn is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 2. Enable I2C by setting USInMS[1:0] bits in USInCR1, IICnIEbit in USInCR4 and USInEN bit in USInCR2. This provides main clock to the peripheral.
- 3. When a START condition is detected, I2C receives one byte of data and compares it with USInSLA[6:0] bits in USInSAR. If the GCALLn bit in USInSAR is enabled, I2Cn compares the received data with value 0x00, the general call address.
- 4. If the received address does not equal to SLAn bits in USInSAR, I2C enters idle state i.e., waits for another START condition. Else if the address equals to SLAn bits and the ACKnEN bit is enabled, I2C generates SSELn interrupt and the SCLn line is held LOW. Note that even if the address equals to SLAn bits, when the ACKnEN bit is disabled, I2C enters idle state. When SSELn interrupt occurs and I2C is ready to receive data, write arbitrary value to USInST2 to release SCLn line.
- 5. Byte of data is being received.
- 6. In this step, I2C generates TENDn interrupt and holds the SCLn line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

Case 1: No ACK signal is detected (ACKnEN=0) and I2C waits STOP or repeated START condition.

Case 2: ACK signal is detected (ACKnEN=1) and I2C can continue to receive data from master.

After doing one of the actions above, write arbitrary value to USInST2 to release SCLn line. For the case 1, move to step 7 to terminate communication. For the case 2, move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

7. This is the final step for slave receiver function of I2C, handling STOP interrupt. The STOPCn bit indicates that data transfer between master and slave is over. To clear USInST2, write any value to USInST2. After this, I2C enters idle state.

15.20 USIn I2C block diagram

Figure 102. USIn I2C Block Diagram

	Table 31. USI Register Map									
Name	Address	Direction	Default	Description						
USI0BD	E3H	R/W	FFH	USI0 Baud Rate Generation Register						
USI0DR	E5H	R/W	00H	USI0 Data Register						
USI0SDHR	E4H	R/W	01H	USI0 SDA Hold Time Register						
USI0SCHR	E7H	R/W	3FH	USI0 SCL High Period Register						
USI0SCLR	E6H	R/W	3FH	USI0 SCL Low Period Register						
USI0SAR	DDH	R/W	00H	USI0 Slave Address Register						
USI0CR1	D9H	R/W	00H	USI0 Control Register 1						
USI0CR2	DAH	R/W	00H	USI0 Control Register 2						
USI0CR3	DBH	R/W	00H	USI0 Control Register 3						
USI0CR4	DCH	R/W	00H	USI0 Control Register 4						
USI0ST1	E1H	R/W	80H	USI0 Status Register 1						
USI0ST2	E2H	R	00H	USI0 Status Register 2						
USI1BD	F3H	R/W	FFH	USI1 Baud Rate Generation Register						
USI1DR	F5H	R/W	00H	USI1 Data Register						
USI1SDHR	F4H	R/W	01H	USI1 SDA Hold Time Register						
USI1SCHR	F7H	R/W	3FH	USI1 SCL High Period Register						
USI1SCLR	F6H	R/W	3FH	USI1 SCL Low Period Register						
USI1SAR	EDH	R/W	00H	USI1 Slave Address Register						
USI1CR1	E9H	R/W	00H	USI1 Control Register 1						
USI1CR2	EAH	R/W	00H	USI1 Control Register 2						
USI1CR3	EBH	R/W	00H	USI1 Control Register 3						
USI1CR4	ECH	R/W	00H	USI1 Control Register 4						
USI1ST1	F1H	R/W	80H	USI1 Status Register 1						
USI1ST2	F2H	R	00H	USI1 Status Register 2						

15.21 Register map

15.22 USIn register description

USInBD (USIn Baud- Rate Generation Register: For UART and SPI mode): E3H/F3H, n = 0, 1

7	6	5	4	3	2	1	0
USInBD7	USInBD6	USInBD5	USInBD4	USInBD3	USInBD2	USInBD1	USInBD0
RW	RW	RW	RW	RW	RW	RW	RW
						Initial	value: FFH
USInBD[7:0] The value in this register is used to generate internal baue asynchronous mode or to generate SCKn clock in SPI m prevent malfunction, do not write '0' in asynchronous mode not write '0' or '1' in SPI mode.							
		USInSAR reg address regis	gister, USInBD ster when the) register is USIn I2C			

USInDR (USIn Data Register: For UART, SPI, and I2C mode): E5H/F5H, n = 0, 1

7	6	5	4	3	2	1	0	
USInDR7	USInDR6	USInDR 5	USInDR4	USInDR3	USInDR2	USInDR1	USInDR0	
RW	RW	RW	RW	RW	RW	RW	RW	
						Initial	value: 00H	
USInDR[7:0] The USIn transmit buffer and receive buffer share the same I/O address with this DATA register. The transmit data buffer is the destination for data written to the USInDR register. Reading the USInDR register returns the contents of the receive buffer.								
			Write to this mode, the S register.	register only w CK clock is g	hen the DREn enerated whe	flag is set. In n data are wri	SPI master tten to this	

USInSDHR (USInSDA Hold Time Register: For I2C mode): E4H/F4H, n = 0, 1

	7	6	5	4	3	2	1	0
	USInSDHR7	USInSDHR6	USInSDHR5	USInSDHR4	USInSDHR3	USInSDHR2	USInSDHR1	USInSDHR0
	RW	RW	RW	RW	R/W	RW	RW	RW
							Initial	value: 01H
USInSDHR[7:0] The register is used to control SDAn output timing from the fallin edge of SCI in I2C mode. NOTES:								
				1. T m	hat SDAn is ch naster SDAn cha	anged after te	_{сськ} X (USInSI ddle of SCLn.	DHR+2), in
				2. Ir fr	n slave mode, equency of SCL	configure this n from master	s register reg	arding the
				3. T	he SDAn is ch	anged after te	CLK X (USInS	DHR+2) in

 The SDAn is changed after t_{SCLK} X (USInSDHR+2) in master mode. So, to insure operation in slave mode, the value t_{SCLK} X (USInSDHR+2) must be smaller than the period of SCL.

7	6	5	4	3	2	1	0	
USInSCHR7	USInSCHR6	USInSCHR5	USInSCHR 4	USInSCHR 3	USInSCHR 2	USInSCHR 1	USInSCHR 0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
						Initial	value: 3FH	
	USIr	igh period of S	SCLn when it	operates in				
The base clock is SCLK, the system clock, and the period is calculated by the formula: t _{SCLK} X (4 X USInSCHR +2) where								
			t _{SCLK} is the p	eriod of SCLK.				

USInSCHR (USInSCL High Period Register: For I2C mode): E7H/F7H, n = 0, 1

So, the operating frequency of I2C master mode is calculated by the following equation.

 $f_{I2C} = \frac{1}{t_{SCLK}X (4 X (USInSCLR + USInSCHR) + 4)}$

USInSCLR (USInSCL Low Period Register: For I2C mode): E6H/F6H, n = 0, 1

7	6	5	4	3	2	1	0		
USInSCLR7	USInSCLR6	USInSCLR5	USInSCLR4	USInSCLR3	USInSCLR2	USInSCLR1	USInSCLR0		
RW	RW	RW	RW	RW	RW	RW	R/W		
Initial value: 3FH									
	USIr	SCLR[7:0]	This register I2C master n	defines the hinde.	igh period of S	SCLn when it	operates in		
The base clock is SCLK, the system clock, and the period is calculated by the formula: t _{SCLK} X (4 X USInSCLR +2) where									
			t _{SCLK} is the p	eriod of SCLK.					

USInSAR (USIn Slave Address Register: For I2C mode): DDH/EDH, n = 0, 1

7	6	5	4	3	2	1	0	
USInSLA6	USInSLA5	USInSLA4	USInSLA3	USInSLA2	USInSLA1	USInSLA0	USInGCE	
RW	RW	RW	RW	RW	RW	RW	RW	
						Initial	value: 00H	
	USIr	nSLA[6:0]	These bits c I2C slave mo	onfigure the sl ode.	ave address o	of I2C when it	operates in	
USINGCE This bit decides whether I2C allows general call address or not i I2C slave mode.								
			0 Igno	ore general cal	l address			
			1 Allo	w general call	address			

7 6 5 4 3 2 1 0 USInS1 USInS0 USInMS0 USInPM1 USInMS1 USInPM0 USInS2 CPOLn ORDn CPHAn RW RW RW RW RW RW RW RW Initial value: 00H USInMS[1:0] Selects operation mode of USIn USInMS0 USInMS1 Operation mode 0 0 Asynchronous Mode (UART) 0 1 Synchronous Mode 0 1 I2C mode SPI mode 1 1 USInPM[1:0] Selects parity generation and check methods (only UART mode) USInPM0 USInPM1 Parity 0 0 No Parity 0 1 Reserved 1 0 Even Parity Odd Parity 1 1 USInS[2:0] When in asynchronous or synchronous mode of operation, selects the length of data bits in frame USInS2 USInS1 USInS0 Data Length 0 0 0 5 bit 0 0 1 6 bit 0 1 0 7 bit 0 1 1 8 bit 1 0 0 Reserved 0 1 Reserved 1 0 1 Reserved 1 1 1 1 9 bit ORDn This bit in the same bit position with USInS1. The MSB of the data byte is transmitted first when set to '1' and the LSB when set to '0' (only SPI mode) 0 LSB-first 1 MSB-first CPHAn This bit is in the same bit position with USInS0. This bit determines if data are sampled on the leading or trailing edge of SCKn (only SPI mode). CPOLn CPHAn Leading edge Trailing edge 0 Sample (Rising) Setup (Falling) 0 0 1 Setup (Rising) Sample (Falling) 1 0 Sample (Falling) Setup (Rising) 1 1 Setup (Falling) Sample (Rising) This bit determines the clock polarity of ACK in synchronous or SPI CPOLn mode. 0 TXD change @Rising Edge, RXD change @Falling Edge TXD change @Falling Edge, RXD change @Rising 1

Edge

USInCR1 (USIn Control Register 1: For UART, SPI, and I2C mode): D9H/E9H, n = 0, 1

7	6	5		4	3	2	1	0			
DRIEn	TXCIEn	RXCIEn	WA	KEIEn	TXEn	RXEn	USInEN	DBLSn			
RW	RW	RW	F	RW .	RW	RW	RW	RW			
			Initial value: 00H								
	DRI	Ξn	Interrupt enable bit for data register empty (only UART and SPI mode).								
			0	Interru	pt from DREn i	s inhibited (us	e polling)				
			1	When	DREn is set, re	equest an inter	rupt				
	TXC	lEn	Interrupt enable bit for transmit complete (only UART and SPI mode).								
			0 Interrupt from TXCn is inhibited (use polling)								
			1 When TXCn is set, request an interrupt								
	RXC	lEn	Interrup	ot enable	e bit for receive	complete (on	ly UART and S	SPI mode).			
			0	Interru	pt from RXCn i	s inhibited (us	e polling)				
			1	When	RXCn is set, re	equest an inter	rupt				
	WAr	XEIEII	device request DRIEn respect	is in sto ted to w bit and l ively.	p mode, if RXI vake-up system JSInST1 regist	Dn goes to low n. (only UART er value should	d level an intern mode). At th be set to '0b'	rupt can be at time the and "00H",			
			0	Interru	pt from Wake is	s inhibited					
			1 When WAKEn is set, request an interrupt								
			NOTE) WAKEIEn must set after USInEN setting '1'.								
	TXE	n	Enables the transmitter unit (only UART and SPI mode).								
			0	I ransr	nitter is disable	d					
			1	Iransr	nitter is enable	d 					
	RXE	:N	Enable	s the red	ceiver unit (only	UART and S	PI mode).				
			0	Receiv	er is disabled						
					er is enabled						
	031		Activate			iy supplying.					
			1								
	וסח	S n	I Thia hit			ling rate (anly					
	DBL	311		Norma			UARI).				
			1	Double			tion				
			I	DOUDIE	sopeeu asynci	nonous opera	uon				

USInCR2 (USIn Control Register 2: For UART, SPI, and I2C mode): DAH/EAH, n = 0, 1

7	6	5	4	3	2	1	0				
MASTERn	LOOPSn	DISSCKn	USINSS	EN FXCHn	USInSB	USInTX8	USInRX8				
RW	RW	RW	RW	RW	RW	RW	R				
			Initial value: 00H								
	MAS	STERn	Selects master or slave in SPI and synchronous mode operation and controls the direction of SCKn pin								
			0 S	ave mode operation	on (External clo	ck for SCKn).					
			1 M	aster mode operat	ion (Internal clo	ock for SCKn).					
	LOC	PSn	Controls the loop back mode of USIn for test mode (only UART and SPI mode)								
			0 N	ormal operation							
			1 Loop Back mode								
	DISS	SCKn	In synchro output	nous mode of op	peration, select	s the waveform	n of SCKn				
			0 ACK is free-running while UART is enabled in synchronous master mode								
			1 A	CK is active while	any frame is on	transferring					
	USIr	SSEN	This bit co	ntrols the SSn pin	operation (only	SPI mode)					
			0 D	sable							
			1 E	able							
	FXC	Hn	SPI port fu	nction exchange of	control bit (only	SPI mode)					
			0 No effect								
			1 E:	Exchange MOSIn and MISOn function							
	USIr	ISB	Selects th of operation	e length of stop bi n.	t in asynchrond	ous or synchron	nous mode				
			0 1	Stop Bit							
			1 2	Stop Bit							
	USIr	nTX8	The ninth operation.	bit of data frame in Write this bit first l	n asynchronous pefore loading t	s or synchronoi he USInDR reç	us mode of gister				
			0 M	SB (9 th bit) to be tr	ansmitted is '0'						
			1 M	SB (9 th bit) to be tr	ansmitted is '1'						
	USIr	nRX8	The ninth bit of data frame in asynchronous or synchronous mode of operation. Read this bit first before reading the receive buffer (only UART mode).								
			0 M	SB (9 th bit) receive	ed is '0'						
			1 M	SB (9 th bit) receive	ed is '1'						

USInCR3 (USIn Control Register 3: For UART, SPI, and I2C mode): DBH/EBH, n = 0, 1

7	6	5	4	3	2	1	0			
liCnIFR	_	RESETn	IICnIE	ACKnEN	IMASTERn	STOPCn	STARTCn			
R	-	RW	RW	RW	R	RW	RW			
						Initial	value: 00H			
	llCn	IFR t	This is an interrupt flag bit for I2C mode. When an interrupt occurs, this bit becomes '1'. This bit is cleared when write any values in the USInST2. Writing "1" has no effect.							
		(0 I2C inte	errupt no gene	ration					
			1 I2C inte	errupt generati	on					
	RES	SETn I	Initialize Interna	I registers of I	2C					
		(0 No operation							
			1 Initializ	e I2C, auto cle	ared					
	llCn	IE I	Interrupt Enable	e bit for I2C mo	ode					
		(0 Interrup	ot from I2C is i	nhibited (use p	olling)				
			1 Enable	interrupt for I2	2C					
	ACK	(nEN (Controls ACK s	ignal Generati	on at ninth SC	Ln period.				
		(0 No AC	K signal is gen	erated (SDAn	=1)				
			1 ACK si	gnal is genera	ted (SDAn =0)					
			NOTE: ACK signal is output (SDA =0) for the following 3 cases. When received address packet equals to USInSLA bits in USInSAR. When received address packet equals to value 0x00 with GCALLn enabled. When I2C operates as a receiver (master or slave)							
	IMA	STERn I	Represent oper	ating mode of	I2C					
		(0 I2C is i	n slave mode						
			1 I2C is i	n master mode	e					
	STC	PCn \	When I2C is ma	aster, STOP co	ondition genera	ation				
		(0 No effe	ct						
			1 STOP	condition is to	be generated					
	STA	RTCn \	When I2C is ma	aster, START o	condition gene	ration				
		(0 No effe	ect						
			1 START	or repeated S	START condition	on is to be gen	erated			

USI0CR4 (USIn Control Register 4: For I2C mode): DCH/ECH, n = 0, 1

7 6 5		5	4	3	2	1	0				
DREn	TXCn	RXCn	WAKEn	USInRST	DORn	FEn	PEn				
RW	RW	R	R/W	RW	R	RW	RW				
	DRE	n	The DREn fla receive new d written. This fla 0 Trans	g indicates if th ata. If DREn is ag can generate mit buffer is not	ne transmit but '1', the buffer e a DREn inter t empty.	Initial ffer (USInDR) is empty and r rupt.	value: 80H is ready to ready to be				
	TXC	n	This flag is set been shifted o transmit buffer service routine a TXCn interru	when the entir but and there is c. This flag is a e of a TXCn inte upt. This bit is a	e frame in the s no new data utomatically cl rrupt is execute utomatically cle	transmit shift n a currently pre- leared when th ed. This flag ca eared.	egister has sent in the ne interrupt in generate				
			0 Trans	mission is ongo	ping.						
			1 Trans are sh	mit buffer is em ifted out compl	pty and the date tely.	ta in transmit s	hift register				
	RXC	n	This flag is set when there are unread data in the receive buffer and cleared when all the data in the receive buffer are read. The RXCn flag can be used to generate an RXCn interrupt.								
			0 There	is no data unre	ead in the rece	ive buffer					
			1 There	1 There are more than 1 data in the receive buffer							
	WAK	ίEn	This flag is set STOP mode. This bit is set should be clear	when the RXD This flag can be only when in as ired by program	n pin is detecte e used to gene synchronous m n software. (on	ed low while the erate a WAKE ode of operation by UART mode	e CPU is in n interrupt. on. This bit)				
			0 No W	AKE interrupt is	s generated.						
			1 WAKE interrupt is generated								
	USIn	RST	This is an internal reset and only has effect on USIn. Writing '1' to this bit initializes the internal logic of USIn and this bit is automatically cleared to '0'.								
			0 No op	eration							
			1 Reset	USIn							
	DOR	'n	This bit is set if a Data Overrun occurs. While this bit is set, the incoming data frame is ignored. This flag is valid until the receive buffer is read.								
			0 No Da	ata Overrun							
			1 Data	Overrun detecte	ed						
	FEn		This bit is set i is detected as UART mode)	f the first stop b '0'. This bit is v	bit of next char alid until the re	acter in the rec ceive buffer is	eive buffer read. (only				
			0 No Fr	ame Error							
			1 Frame	e Error detected	Ł						
	PEn		This bit is set Error to be rec until the receiv	if the next chan eived while Pan re buffer is read	racter in the re rity Checking is I. (only UART r	ceive buffer h s enabled. This node)	as a Parity bit is valid				
			0 No Pa	arity Error							
			1 Parity	Error detected							

USInST1 (USIn Status Register 1: For UART and SPI mode): E1H/F1H, n = 0, 1

7	6	5	4	3	2	1	0				
GCALLn	TENDn	STOPDn	SSELn	MLOSTn	BUSYn	TMODEn	RXACKn				
R	RW	RW	RW	RW	RW	RW	RW				
						Initial	value: 00H				
	GCA	LLn ^(NOTE)	This bit has diff slave. When I2 AACK (address	I his bit has different meaning depending on whether I2C is master or slave. When I2C is a master, this bit represents whether it received AACK (address ACK) from slave.							
			0 No AA	CK is received	(Master mode	e)					
			1 AACK is received (Master mode)								
			When I2C is a slave, this bit is used to indicate general call.								
			0 General call address is not detected (Slave mode)								
			1 General call address is detected (Slave mode)								
	TEN	Dn ^(NOTE)	This bit is set w	/hen 1-byte of	data is transfe	rred completel	y				
			0 1 byte	of data is not o	completely trar	nsferred					
			1 1 byte	of data is com	pletely transfe	rred					
	SIO		I his bit is set w	/hen a STOP c	ondition is det	ected.					
				OP condition is	s detected						
	00E		This bit is set w	condition is de	tected	or mostor					
	33E	LIN		net selected as		er master.					
			0 12C is	addressed by a	o a slave other master a	nd acts as a sl	21/0				
	MLC	STn(NOTE)	This bit represents the result of bus arbitration in master mode.								
	MEC		0 I2C maintains bus mastership								
			1 I2C maintains bus mastership during arbitration process								
	BUS	Yn	This bit reflects bus status								
			0 I2C bu	s is idle, so a r	naster can iss	ue a START co	ondition				
			1 I2C bu	s is busy							
	ТМС	DEn	This bit is used	to indicate wh	ether I2C is tra	ansmitter or re	ceiver.				
			0 I2C is	a receiver							
			1 I2C is	a transmitter							
	RXA	CKn	This bit shows	the state of AC	K signal						
			0 No AC	K is received							
			1 ACK is	received at ni	nth SCL period	d					
	NOTE: These bits can be a source of interrupt. When an I2C interrupt occurs excerning of STOP mode, the SCLn line is hold LOW. To release SCLn, write arbitration value to USInST2. When USInST2 is written, the TENDn, STOPDn, SSEI MLOSTn, and RXACKn bits are cleared.										

USInST2 (USIn Status Register 2: For I2C mode): E2H/F2H, n = 0, 1

15.23 Baud rate settings (example)

Table 32. Example1	of USI0BD and	USI1BDSettings	for Commonly	Used Oscill	ator Frequencies
		U			

Baud	fx = 1.00MHz		fx = 1.8432MHz		fx = 2.00MHz	
rate	USI0BD/USI1BD	Error	USI0BD/USI1BD	Error	USI0BD/USI1BD	Error
(bps)						
2400	25	0.2%	47	0.0%	51	0.2%
4800	12	0.2%	23	0.0%	25	0.2%
9600	6	-7.0%	11	0.0%	12	0.2%
14.4k	3	8.5%	7	0.0%	8	-3.5%
19.2k	2	8.5%	5	0.0%	6	-7.0%
28.8k	1	8.5%	3	0.0%	3	8.5%
38.4k	1	-18.6%	2	0.0%	2	8.5%
57.6k	—	—	1	-25.0%	1	8.5%
76.8k	—	_	1	0.0%	1	-18.6%
115.2k	—	_	—	—	—	—
230.4k	—	—	—	—	—	—
2400	25	0.2%	47	0.0%	51	0.2%
4800	12	0.2%	23	0.0%	25	0.2%
9600	6	-7.0%	11	0.0%	12	0.2%
14.4k	3	8.5%	7	0.0%	8	-3.5%
19.2k	2	8.5%	5	0.0%	6	-7.0%
28.8k	1	8.5%	3	0.0%	3	8.5%
38.4k	1	-18.6%	2	0.0%	2	8.5%
57.6k	—	—	1	-25.0%	1	8.5%
76.8k	—	_	1	0.0%	1	-18.6%
115.2k	—	_	—	_	—	_
230.4k	_	—	_	_	_	_

Baud rate	fx = 8.00MHz		fx = 11.0592MHz		
(bps)	USI0BD/USI1BD	Error	USI0BD/USI1BD	Error	
2400	207	0.2%	_	—	
4800	103	0.2%	143	0.0%	
9600	51	0.2%	71	0.0%	
14.4k	34	-0.8%	47	0.0%	
19.2k	25	0.2%	35	0.0%	
28.8k	16	2.1%	23	0.0%	
38.4k	12	0.2%	17	0.0%	
57.6k	8	-3.5%	11	0.0%	
76.8k	6	-7.0%	8	0.0%	
115.2k	3	8.5%	5	0.0%	
230.4k	1	8.5%	2	0.0%	
250k	1	0.0%	2	-7.8%	
0.5M	—	_	_	—	
1M	—	—	—	—	

Table 33. Example2 of USI0BD and USI1BDSettings for Commonly Used Oscillator Frequencies

16 USART2

Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly flexible serial communication device. USART2 of A96G140/A96G148/A96A148 features the followings:

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Master or Slave Clocked Synchronous and SPI Operation
- Supports all four SPI Modes of Operation (Mode 0, 1, 2, 3)
- LSB First or MSB First Data Transfer @SPI mode
- High Resolution Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data bits and 1 or 2 Stop bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Digital Low Pass Filter
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous Communication Mode

USART2 has three main parts such as a Clock Generator, Transmitter and Receiver.

Clock Generation logic consists of a synchronization logic for external clock input used by synchronous or SPI slave operation, and a baud rate generator for asynchronous or master (synchronous or SPI) operation.

Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. Write buffer allows a continuous transfer of data without any delay between frames.

Receiver is the most complex part of the USART2 module due to its clock and data recovery units. Recovery unit is used for asynchronous data reception. In addition to the recovery unit, the Receiver includes a parity checker, a shift register, a two level receive FIFO (UDATA) and control logic. The Receiver supports the same frame formats as the Transmitter and can detect Frame Error, Data OverRun and Parity Errors.

16.1 Block diagram

Figure 103. USART2 Block Diagram

16.2 Clock generation

Clock generation logic generates a base clock signal for the Transmitter and the Receiver. USART2 supports four modes of clock operation such as Normal Asynchronous mode, Double Speed Asynchronous mode, Master Synchronous mode, and Slave Synchronous mode.

Clock generation scheme for Master SPI and Slave SPI mode is the same as Master Synchronous and Slave Synchronous operation mode. The UMSELn bit in UCTRL1 register selects between asynchronous and synchronous operation. Asynchronous Double Speed mode is controlled by the U2X bit in the UCTRL2 register. The MASTER bit in UCTRL2 register controls whether the clock source is internal (Master mode, output port) or external (Slave mode, input port). The XCK pin is only active when the USART2 operates in Synchronous or SPI mode.

Figure 104. Clock Generation Block Diagram

Table 33 contains equations for calculating the baud rate (in bps).

Operating mode	Equation for calculating baud rate		
Asynchronous normal mode (U2X=0)	fSCLK		
	$\text{Baud Kate} = \frac{16(\text{UBAUDx} + 1)}{16(\text{UBAUDx} + 1)}$		
Asynchronous double speed mode (U2X=1)	fSCLK		
	$Bauu Kate = \frac{1}{8(UBAUDx + 1)}$		
Synchronous or SPI master mode	fSCLK		
	$Datu Rate = \frac{1}{2(UBAUDx + 1)}$		

16.3 External clock (XCK)

External clocking is used by the synchronous or SPI slave modes of operation. External clock input from the XCK pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must then pass through an edge detector before it can be used by the Transmitter and Receiver.

This process introduces a two CPU clock period delay and the maximum frequency of the external XCK pin is limited by the following equation:

$$fXCK = \frac{fSCLK}{4}$$

, where fXCK is frequency of XCK, and fSCLK is frequency of main system clock (SCLK).

16.4 Synchronous mode operation

When synchronous mode or SPI mode is used, the XCK pin will be used as either clock input (slave) or clock output (master). The dependency between a clock edge and data sampling or data change is the same. The basic principle is that data input on RXD2 (MISO2 in SPI mode) pin is sampled at the opposite XCK clock edge at the edge in the data output on TXD2 (MOSI2 in SPI mode) pin is changed.

UCPOL bit in UCTRL1 register selects which XCK clock edge is used for data sampling and which is used for data change. As shown in figure 101, when UCPOL is zero, data will be changed at XCK rising edge and sampled at XCK falling edge.

Figure 105. Synchronous Mode XCK Timing

16.5 Data format

A serial frame is defined to consist of one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error checking.

USART2 supports all 30 combinations of the followings as a valid frame format.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). The next data bits, up to a total of nine, are succeeding, ending with the most significant bit (MSB). If enabled, the parity bit is inserted after the data bits, before the stop bits. A high to low transition on data pin is considered as start bit.

When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The next figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

Figure 106. A Frame Format

Single data frame consists of the following bits

- Idle: No communication on communication line (TxD2/RxD2)
- St: Start bit (Low)
- Dn: Data bits (0~8)
- Parity bit ----- Even parity, Odd parity, No parity
- Stop bit(s) ----- 1 bit or 2 bits

A frame format of the USART2 is set by USIZE[2:0], UPM[1:0] and USBS bits in UCTRL1 register. The Transmitter and the Receiver use the same settings.

16.6 Parity bit

Parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclusive-or is inverted. The parity bit is located between St + bits and first stop bit of a serial frame.

- Peven = D_{n-1} ^ ... ^ D₃ ^ D₂ ^ D₁ ^ D₀ ^ 0
- $P_{odd} = D_{n-1}^{A} \dots^{A} D_{3}^{A} D_{2}^{A} D_{1}^{A} D_{0}^{A} 1$
- Peven: Parity bit using even parity
- Podd: Parity bit using odd parity
- D_n: Data bit n of the character

16.7 USART2 transmitter

USART2 Transmitter is enabled by setting the TXE bit in UCTRL1 register. When the Transmitter is enabled, normal port operation of TXD2 pin is overridden by serial output pin of the USART2. Baud rate, operation mode and frame format must be setup once before doing any transmissions.

If synchronous or SPI operation is used, a clock on the XCK pin will be overridden and used as a transmission clock. If USART2 operates in SPI mode, SS2 pin is used as SS2 input pin in slave mode or can be configured as SS2 output pin in master mode. This can be done by setting SPISS bit in UCTRL3 register.

16.7.1 Sending Tx data

A data transmission is initiated by loading a transmit buffer (UDATA register I/O location) with data to be transmitted. The data written in the transmit buffer is moved to a shift register when the shift register is ready to send a new frame. The shift register is loaded with new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted.

When the shift register is loaded with new data, it will transfer one complete frame at the settings of control registers. If 9-bit characters are used in asynchronous or synchronous operation mode (USIZE[2:0] = 7), the ninth bit must be written to the TX8 bit in UCTRL3 register before loading a transmit buffer (UDATA register).

16.7.2 Transmitter flag and interrupt

The USART2 Transmitter has 2 flags which indicate its state. One is USART2 Data Register Empty (UDRE) and the other is Transmit Complete (TXC). Both flags can be used as interrupt sources.

UDRE flag indicates whether the transmit buffer is ready to be loaded with new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains transmission data which has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit field. Writing '1' to this field is not valid.

When Data Register Empty Interrupt Enable (UDRIE) bit in UCTRL2 register is set and Global Interrupt is enabled, USART2 Data Register Empty Interrupt is generated while UDRE flag is set.

Transmit Complete (TXC) flag bit is set when the entire frame in the transmit shift register has been shifted out and there are no more data in the transmit buffer. The TXC flag is automatically cleared when the Transmit Complete Interrupt service routine is executed, or it can be cleared by writing '0' to TXC bit in USTAT register.

When Transmit Complete Interrupt Enable (TXCIE) bit in UCTRL2 register is set and the Global Interrupt is enabled, USART2 Transmit Complete Interrupt is generated while TXC flag is set.

16.7.3 Parity generator

Parity Generator calculates the parity bit for the sending serial frame data. When parity bit is enabled (UPM[1] = 1), transmitter control logic inserts the parity bit between bits and the first stop bit of the sending frame.

16.7.4 Disabling transmitter

Disabling the Transmitter by clearing TXE bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD2 pin is used as normal General Purpose I/O (GPIO) or primary function pin.

16.8 USART2 receiver

USART2 Receiver is enabled by setting the RXE bit in the UCTRL1 register. When the Receiver is enabled, normal pin operation of RXD2 pin is overridden by the USART2 as the serial input pin of the Receiver. Baud rate, mode of operation and frame format must be set before serial reception. If synchronous or SPI operation is used, a clock on the XCK pin will be used as a transfer clock. If the USART2 operates in SPI mode, SS2 pin is used as SS2 input pin in slave mode or can be configured as SS2 output pin in master mode. This can be done by setting SPISS bit in UCTRL3 register.

16.8.1 Receiving Rx data

When USART2 is in synchronous or asynchronous operation mode, the Receiver starts data reception when it detects a valid start bit (LOW) on RXD2 pin. Each bit following the start bit is sampled at predefined baud rate (asynchronous) or sampling edge of XCK (synchronous), and shifted into a receive shift register until the first stop bit of a frame is received.

Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the Receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the UDATA register.

If 9-bit characters are used (USIZE[2:0] = 7), the ninth bit is stored in RX8 bit field in the UCTRL3 register. The 9th bit must be read from the RX8 bit before reading the low 8 bits from the UDATA register. Likewise, error flags FE, DOR, PE must be read before reading data from UDATA register. This is because the error flags are stored in the same FIFO position of the receive buffer.

16.8.2 Receiver flag and interrupt

The USART2 Receiver has one flag that indicates the Receiver state. Receive Complete (RXC) flag indicates whether there are unread data present in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the Receiver is disabled (RXE=0), the receiver buffer is flushed and the RXC flag is cleared.

When Receive Complete Interrupt Enable (RXCIE) bit in the UCTRL2 register is set and Global Interrupt is enabled, USART2 Receiver Complete Interrupt is generated while RXC flag is set.

The USART2 Receiver has three error flags such as Frame Error (FE), Data OverRun (DOR) and Parity Error (PE). These error flags can be read from USTAT register. As data received are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from UDATA register, read the USTAT register first which contains error flags.

Frame Error (FE) flag indicates the state of the first stop bit. The FE flag is set when the stop bit was correctly detected as "1", and the FE flag is cleared when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

Data Over Run (DOR) flag indicates data loss due to a receive buffer's full condition. The DOR occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

Parity Error (PE) flag indicates that the frame in the receive buffer had a Parity Error when received. If Parity Check function is not enabled (UPM[1] = 0), the PE bit is always read "0".

NOTE: The error flags related to the receive operation are not used when USART2 is in SPI mode.

16.8.3 Parity checker

If Parity bit is enabled (UPM[1]=1), Parity Checker calculates parity of data bits of incoming frames and compares the result with the parity bit of the received serial frame.

16.8.4 Disabling receiver

In contrast to Transmitter, disabling the Receiver by clearing RXE bit makes the Receiver inactive immediately. When the Receiver is disabled the Receiver flushes the receive buffer and the remaining data in the buffer is all reset. Function of USART2 is not overridden on the RXD2 pin, so the RXD2 pin becomes normal GPIO or primary function pin.

16.8.5 Asynchronous data reception

To receive asynchronous data frame, the USART2 includes a clock and data recovery unit. The Clock Recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchronous serial frame on the RXD2 pin.

Data recovery logic samples incoming bits and low pass filters them, and this removes the noise of RXD2 pin.

Figure 103 describes sampling process of the start bit of an incoming frame. The sampling rate is 16 times the baud rate for normal mode, and 8 times the baud rate for Double Speed mode (U2X=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the Double Speed mode.

Figure 107. Start Bit Sampling

When the Receiver is enabled (RXE=1), the clock recovery logic tries to find a high to low transition on the RXD2 line, which is a start bit condition. After detecting the high to low transition on RXD2 line, the clock recovery logic uses the samples 8, 9, and 10 for Normal mode, and the samples 4, 5, and 6 for Double Speed mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the Receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for Normal mode and 8 times for Double Speed mode. It uses the samples 8, 9, and 10 to decide data value for Normal mode, and the samples 4, 5, and 6 for Double Speed mode.

If more than 2 samples have low levels, the received bit is considered to a logic 0. If more than 2 samples have high levels, the received bit is considered to a logic 1. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

Figure 108. Sampling of Data and Parity Bit

A process for detecting stop bit is similar to the clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected. If not, a Frame Error flag will be set. After deciding whether a valid stop bit is received or not, the Receiver enters into idle state and monitors the RXD2 line to check a valid high to low transition is detected (start bit detection).

Figure 109. Stop Bit Sampling and Next Start Bit Sampling

16.9 SPI mode

The USART2 can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full duplex, three-wire synchronous data transfer
- Master or Slave operation
- Supports all four SPI modes of operation (mode0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (UMSEL[1:0]=3), the Slave Select (SS2) pin becomes active low input in slave mode operation, or can be output in master mode operation if SPISS bit is set.

Note that during SPI mode of operation, the pin RXD2 is renamed as MISO2, and TXD2 is renamed as MOSI2 for compatibility to other SPI devices.

16.9.1 SPI clock formats and timing

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the USART2 has a clock polarity bit (UCPOL) and a clock phase control bit (UCPHA) to select one of four clock formats for data transfers. UCPOL selectively inserts an inverter in series with a clock. UCPHA selects one of two different clock phase relationships between the clock and the data. Note that UCPHA and UCPOL bits in UCTRL1 register have different meanings according to the UMSEL[1:0] bits which decides the operating mode of USART2.

Table 34 shows four combinations of UCPOL and UCPHA for SPI mode 0, 1, 2, and 3.

SPI Mode	UCPOL	UCPHA	Leading Edge	Trailing Edge
0	0	0	Sample (Rising)	Setup (Falling)
1	0	1	Setup (Rising)	Sample (Falling)
2	1	0	Sample (Falling)	Setup (Rising)
3	1	1	Setup (Falling)	Sample (Rising)

Table 35. CPOL Functionality

When UCPHA=0, the slave begins to drive its MISO2 output with the first data bit value when SS goes to active low. The first XCK edge causes both the master and the slave to sample the data bit value on their MISO2 and MOSI inputs, respectively.

At the second XCK edge, the USART2 shifts the second data bit value out to the MOSI and MISO2 outputs of the master and slave, respectively. Unlike the case of UCPHA=1, when UCPHA=0, the slave's SS input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SS input.

When UCPHA=1, the slave begins to drive its MISO2 output when SS2 goes active low, but the data is not defined until the first XCK edge. The first XCK edge shifts the first bit of data from the shifter onto the MOSI2 output of the master and the MISO2 output of the slave.

The next XCK edge causes both the master and the slave to sample the data bit value on their MISO2 and MOSI2 inputs, respectively.

At the third XCK edge, the USART2 shifts the second data bit value out to the MOSI2 and MISO2 output of the master and slave respectively. When UCPHA=1, the slave's SS input is not required to go to its inactive high level between transfers.

Because an SPI logic reuses the USART2 resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for USART2 Data Register Empty flag (UDRE=1) and then by writing a byte of data to the UDATA Register.

In master mode of operation, even if transmission is not enabled (TXE=0), writing data to UDATA register is necessary because the clock XCK is generated from a transmitter block.

16.10 Receiver time out (RTO)

This USART2 system supports the time out function. This function is occur the interrupts when stop bit are not in RX line during URTOC setting value. RTO count stops in RXD signal live state and RTO clear and start is executed by stop bit recognition.

Example condition is listed in table 35.

Table 36. Example Condition of RTO							
Condition	• sysclk = 16MHz						
	• Baud rate = 115,200 bps						
	 Asynchronous Normal Mode (U2X = 0) 						
Baud rate	sysclk / 16 x (UBAUD + 1)						
Calculated UBAUD	 (1000000 / Target Baud rate) – 1 = 7.68 						
	• Error rate = 0.68						
Real baud rate at	111,111 bps						
sysclk 16Mhz							
1 bit time	9us						
Maximum count	9us * 65536(16bit count) = 589.8ms						
time							

Figure 112. Example for RTO in USART2

Table 37. USART2 Register Map						
Name Address Direction Default Description						
UCTRL1	CBH	R/W	00H	USART2 Control 1 Register		
UCTRL2	ССН	R/W	00H	USART2 Control 2 Register		
UCTRL3	CDH	R/W	00H	USART2 Control 3 Register		
UCTRL4	1018H	R/W	00H	USART2 Control 4 Register		
USTAT	CFH	R	80H	USART2 Status Register		
UBAUD	FCH	R/W	FFH	USART2 Baud Rate Generation Register		
UDATA	FDH	R/W	00H	USART2 Data Register		
FPCR	1019H	R/W	00H	USART2 Floating Point Counter Register		
RTOCH	101AH	R	00H	Receiver Time Out Counter High Register		
RTOCL	101BH	R	00H	Receiver Time Out Counter Low Register		

16.11 Register map

16.12 Register description

UCTRL1 (USART2 Control 1 Register) CBH

7	6	5	2	4	3	2	1	0	
UMSEL1	UMSEL0	UPM1	UP	M0	USIZE2	USIZE1 UDORD	USIZE0 UCPHA	UCPOL	
R/W	R/W	R/W	R/	W/	R/W	R/W	R/W	R/W	
							Initia	al value: 00н	
	UMS	SEL[1:0]	Selects of	operatio	on mode of l	JSART2			
			UMSEL1	ιl	JMSEL0	Operating Mode	e		
			0	0		Asynchronous I	Mode (Normal	Uart)	
			0	1		Synchronous M	ode (Synchror	nous Uart)	
			1	0		Reserved			
			1	1		SPI Mode			
	UPN	/[1:0]	Selects I	Parity C	Seneration a	nd Check metho	ds		
			UPM1	L	JPM0	Parity mode			
			0	0		No Parity			
			0	1		Reserved			
			1	1		Even Parity			
	7⊏[2·0]	I When in	asynch	aronous or s	Vuu Failty	e of operation	selects the		
	001/	ברנצ.טן	length of	data b	bits in frame.		e of operation		
			USIZE2	USIZ	E1 USIZE	0 Data length	1		
			0	0	0	5-bit			
			0	0	1	6-bit			
			0	1	0	7-DIt			
			0	1	1	8-DIL Decemicad			
			1	0	1	Reserved			
			1	1	0	Reserved			
			1	1	1	9-hit			
	UDC	ORD	This bit is	s in the	same bit po	sition with USIZE	1. In SPI mod	le, when set	
			to one th the LSB	of the of	3 of the data data byte is t	byte is transmitter	ed first. When	set to zero	
			0 L	SB Fire	st				
			1 N	1SB Fir	st				
	UCF	POL	Selects polarity of XCK in synchronous or SPI mode						
			0 T	XD2 cł	nange @Risi	ing Edge, RXD2	change @Fall	ing Edge	
			1 T	XD2 cł	nange @ Fal	lling Edge, RXD2	change @ Ri	sing Edge	
	UCF	РНА	I his bit i	IS IN th ⊇∩L bit	e same bit p	osition with US	IZEU. IN SPI n mats for differ	node, along	
			synchror	nous se	erial periphe	rals. Leading ed	de means firs	t XCK edae	
			and trail	ing edg	ge means 2	nd or last clock e	edge of XCK	in one XCK	
			pulse. A	nd Sar	mple means	detecting of ind	coming receive	e bit, Setup	
			means p	reparin	ig transmit d	ata.	T		
			OCPOL					zuge	
			0		1	Sample (Kising) Setup (F	anny) (Falling)	
			1		0	Setup (Rising)		(Falling) Pising)	
			1		1	Satup (Falling	y Setup (R	(Pising)	
			I		I	Setup (Failing)	Sample	(INBILIY)	

7	6	5	4	3	2	1	0
UDRIE	TXCIE	RXCIE	WAKEIE	TXE	RXE	USARTEN	U2X
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Initia	ll value: 00 _H
	UDF	RIE	Interrupt ena	ble bit for USAR	T2 Data Regis	ter Empty.	
			0 Inter	rupt from UDRE	is inhibited (u	se polling)	
			1 Whe	n UDRE is set, r	equest an inte	errupt	
	TXC	IE	Interrupt ena	ble bit for Transr	mit Complete.		
			0 Inter	rupt from TXC is	s inhibited (use	e polling)	
			1 Whe	n TXC is set, ree	quest an interr	upt	
	RXC	CIE	Interrupt ena	ble bit for Receiv	/e Complete		
			0 Inter	rupt from RXC is	s inhibited (use	e polling)	
			1 Whe	n RXC is set, re	quest an interr	upt	
	WA	KEIE	Interrupt ena device is in s requested to	ble bit for Asyn top mode, if RXI wake-up system	chronous Wal 02 goes to LO\ n.	ke in STOP m N level an inter	ode. When rupt can be
			0 Inter	rupt from Wake	is inhibited		
			1 Whe	n WAKE is set,	request an inte	errupt	
			NOT	E: WAKEIE mus	st set after US	ARTEN setting	'1'.
	TXE		Enables the	ransmitter unit.			
			0 Trar	smitter is disable	ed		
		_	1 Trar	smitter is enable	ed		
	RXE		Enables the	eceiver unit.			
			0 Rec	eiver is disabled			
		DTEN	1 Rec	eiver is enabled			
	USA	RIEN	Activate USA	RI2 module by	supplying cloc	:К.	
				RIZ IS disabled	(CIOCK IS NAITE	a)	
				k i ∠ is enabled	ho oovrahraa	aug operation	and colocto
	028		receiver sam	pling rate.	ne asynchrono	ous operation a	anu selects
			0 Norr	nal asynchronou	is operation		
			1 Dou	ole Speed async	hronous opera	ation	

UCTRL2 (USART2 Control 2 Register) CCH

UCTRL3 (USART2 Control 3 Register) CDH
--

7	6	5	4	3	2	1	0		
MASTER	LOOPS	DISXCK	SPISS	-	USBS	TX8	RX8		
R/W	R/W	R/W	R/W	-	R/W	R/W	R		
						Initia	ıl value: 00⊦		
	MAS	STER	Selects master controls the dire	or slave in Sl ection of XCK	PI or Synchror pin.	nous mode op	eration and		
			0 Slave	mode operatio	n and XCK is i	nput pin.			
			1 Master mode operation and XCK is output pin						
	LOC	PS	Controls the Lo	op Back mode	e of USART2, f	for test mode			
			0 Norma	l operation					
			1 Loop E	Back mode					
	DIS	KCK	In Synchronous mode of operation, selects the waveform of XCK output.						
			0 XCK is master	free-running v mode.	while USART i	s enabled in s	ynchronous		
			1 XCK is	active while a	any frame is on	transferring.			
	SPIS	SS	Controls the fu	nctionality of S	S2 pin in mast	ter SPI mode.			
			0 SS2 pi	n is normal GF	PIO or other pr	imary function			
			1 SS2 or	utput to other s	slave device				
	USB	S	Selects the len of operation.	gth of stop bit	in Asynchronc	ous or Synchro	nous mode		
			0 1 Stop	bit					
			1 2 Stop	bit					
	TX8		The ninth bit of operation. Write	data frame in e this bit first b	Asynchronous efore loading t	or Synchrono he UDATA reg	ous mode of gister.		
			0 MSB (9 th bit) to be tra	ansmitted is '0'	1			
			1 MSB (9 th bit) to be tra	ansmitted is '1'	1			
	RX8		The ninth bit of operation. Rea	data frame in d this bit first b	Asynchronous	s or Synchrono the receive bu	ous mode of ffer.		
			0 MSB (9 th bit) received	d is '0'				
			1 MSB (9 th bit) received	d is '1'				

7	6	5	4	3	2	1	0			
-	-	-	RTOEN	RTO_FLAG	FPCREN	AOVSSEL	AOVSEN			
-	-	-	R/W	R/W	R/W	R/W	R/W			
						Initial	value: 00 _H			
	RTOEN	l Ena	able receiver t	ime out.						
		0	Disable							
		1	Enable							
	RTO_FLAG This bit is set when RTO count overflows. This flag can ge RTO interrupt. Writing '0' to this bit position will clear RTO_I									
		0	RTO cou	int dose not ov	erflow.					
		1	RTO cou	int overflow.						
	FPCRE	N Ena	Enable baud rate compensation							
		0	Disable							
		1	Enable							
	AOVSS	EL Sel	Select additional oversampling rates							
		0	0 Select X13							
		1	1 Select X4							
	AOVSE	N Ena	able additiona	loversampling	rates selection	on				
		0	Disable							
		1	Enable							

UCTRL4 (USART2 Control 4 Register) 1018H

7 6 5 4 3 2 0 1 UDRE TXC RXC WAKE SOFTRST DOR FE PE R/W R/W R/W R/W R/W R R R Initial value: 80_H The UDRE flag indicates if the transmit buffer (UDATA) is ready to be UDRE loaded with new data. If UDRE is '1', it means the transmit buffer is empty and can hold one or two new data. This flag can generate an UDRE interrupt. Writing '0' to this bit position will clear UDRE flag. 0 Transmit buffer is not empty. Transmit buffer is empty. 1 TXC This flag is set when the entire frame in the transmit shift register has been shifted out and there is no new data currently present in the transmit buffer. This flag is automatically cleared when the interrupt service routine of a TXC interrupt is executed. It is also cleared by writing '0' to this bit position. This flag can generate a TXC interrupt. 0 Transmission is ongoing. Transmit buffer is empty and the data in transmit shift register 1 are shifted out completely. RXC This flag is set when there are unread data in the receive buffer and cleared when all the data in the receive buffer are read. The RXC flag can be used to generate a RXC interrupt. 0 There is no data unread in the receive buffer 1 There are more than 1 data in the receive buffer WAKE This flag is set when the RX pin is detected low while the CPU is in stop mode. This flag can be used to generate a WAKE interrupt. This bit is set only when in asynchronous mode of operation. NOTE 0 No WAKE interrupt is generated. WAKE interrupt is generated. 1 SOFTRST This is an internal reset and only has effect on USART. Writing '1' to this bit initializes the internal logic of USART and is auto cleared. 0 No operation 1 Reset USART DOR This bit is set if a Data OverRun occurs. While this bit is set, the incoming data frame is ignored. This flag is valid until the receive buffer is read. 0 No Data OverRun 1 Data OverRun detected FE This bit is set if the first stop bit of next character in the receive buffer is detected as '0'. This bit is valid until the receive buffer is read. 0 No Frame Error Frame Error detected 1 PE This bit is set if the next character in the receive buffer has a Parity Error when received while Parity Checking is enabled. This bit is valid until the receive buffer is read. 0 No Parity Error 1 Parity Error detected

USTAT (USART2 Status Register) CFH

NOTE: When the WAKE function of USART is used as a release source from STOP mode, it is required to clear this bit in the RX interrupt service routine. Else the device will not wake-up from STOP mode again by the change of RX pin.

7	6	5	4	3	2	1	0		
UBAUD7	UBAUD6	UBAUD5	UBAUD4	UBAUD3	UBAUD2	UBAUD1	UBAUD0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Initial value: FF _H									

UBAUD (USART Baud-Rate Generation Register) FCH

UBAUD [7:0]

The value in this register is used to generate internal baud rate in asynchronous mode or to generate XCK clock in synchronous or SPI mode. To prevent malfunction, do not write '0' in asynchronous mode,

and do not write '0' or '1' in synchronous or SPI mode.

UDATA (USART Data Register) FDH

7	6	5	4	3	2	1	0			
UDATA7	UDATA6	UDATA 5	UDATA 4	UDATA 3	UDATA 2	UDATA 1	UDATA 0			
R/W	R/W	R/W R/W F		R/W	R/W	R/W	R/W			
Initial value: 00 _H										

UDATA [7:0] The USART Transmit Buffer and Receive Buffer share the same I/O address with this DATA register. The Transmit Data Buffer is the destination for data written to the UDATA register. Reading the UDATA register returns the contents of the Receive Buffer. Write this register only when the UDRE flag is set. In SPI or

synchronous master mode, write this register even if TX is not enabled to generate clock, XCK.

FPCR (USART Floating Point Register) 1019H

7	6	5	4	3	2	1	0
FPCR7	FPCR6	FPCR5	FPCR4	FPCR3	FPCR2	FPCR1	FPCR0
R/W							

Initial value: 00H

FPCR [7:0] US

USART Floating Point Counter 8-bit floating point counter

NOTE: BAUD RATE compensation can be used in the following ways:

Example1

- Condition : sysclk = 16MHz, Baud rate = 9600 bps, Asynchronous Normal Mode (U2X = 0)
- Baud rate = sysclk / 16 x (UBAUD + 1)
- Calculated UBAUD = (1000000 / Target Baud rate) 1 = 103.17, Error rate = 0.17 ⇒ UBAUD = 104
- UCTRL4 = 0x04, Enable baud rate Compensation
- Calculated FPCR = (UBAUD Calculated UBAUD) x 256 = (104 103.17) x 256 = 212.48 ⇒ FPCR = 213

Example2

- Condition : sysclk = 16MHz, Baud rate = 115,200 bps, Asynchronous Normal Mode (U2X = 0)
- Baud rate = sysclk / 16 x (UBAUD + 1)
- Calculated UBAUD = (1000000 / Target Baud rate) 1 = 7.68, Error rate = 0.68 ⇒ UBAUD = 8
- UCTRL4 = 0x04, Enable baud rate Compensation
- Calculated FPCR = (UBAUD Calculated UBAUD) x 256 = (8 7.68) x 256 = $81.92 \Rightarrow$ FPCR = 82

RTOCH (Received	^r Time Out	Counter High	Register) 101AH
------------------------	-----------------------	---------------------	-----------------

7	6	5	4	3	2	1	0	
RTOCH7	RTOCH6	RTOCH5	RTOCH4	RTOCH3	RTOCH2	RTOCH1	RTOCH0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value: 00								

RTOCL (Receiver Time Out Counter Low Register) 101BH

7	6	5	4	3	2	1	0
RTOCL7	RTOCL6	RTOCL5	RTOCL4	RTOCL3	RTOCL2	RTOCL1	RTOCL0
R/W							

Initial value: 00н

16.13 Baud rate settings (example)

Table 38. Examples of UBAUD Settings for Commonly Used Oscillator Frequencies

	fOSC=	=1.00MHz			fOSC=1.8432MHz					fOSC=2.00MHz			
Baud	U2X=0)	U2X=1		U2X=0		U2X=1		U2X=0		U2X=1		
Rate	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAU D	ERROR	UBAUD	ERROR	
2400	25	0.2%	51	0.2%	47	0.0%	95	0.0%	51	0.2%	103	0.2%	
4800	12	0.2%	25	0.2%	23	0.0%	47	0.0%	25	0.2%	51	0.2%	
9600	6	-7.0%	12	0.2%	11	0.0%	23	0.0%	12	0.2%	25	0.2%	
14.4K	3	8.5%	8	-3.5%	7	0.0%	15	0.0%	8	-3.5%	16	2.1%	
19.2K	2	8.5%	6	-7.0%	5	0.0%	11	0.0%	6	-7.0%	12	0.2%	
28.8K	1	8.5%	3	8.5%	3	0.0%	7	0.0%	3	8.5%	8	-3.5%	
38.4K	1	- 18.6%	2	8.5%	2	0.0%	5	0.0%	2	8.5%	6	-7.0%	
57.6K	-	-	1	8.5%	1	-25.0%	3	0.0%	1	8.5%	3	8.5%	
76.8K	-	-	1	- 18.6%	1	0.0%	2	0.0%	1	-18.6%	2	8.5%	
115.2K	-	-	-	-	-	-	1	0.0%	-	-	1	8.5%	
230.4K	-	-	-	-	-	-	-	-	-	-	-	-	
	fOSC=	=3.6864MHz	2		fOSC=4.0	0MHz			fOSC=	7.3728MHz			
Baud	U2X=0)	U2X=1		U2X=0		U2X=1		U2X=0		U2X=1		
Nale	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	
2400	95	0.0%	191	0.0%	103	0.2%	207	0.2%	191	0.0%	-	-	
4800	47	0.0%	95	0.0%	51	0.2%	103	0.2%	95	0.0%	191	0.0%	
9600	23	0.0%	47	0.0%	25	0.2%	51	0.2%	47	0.0%	95	0.0%	
14.4K	15	0.0%	31	0.0%	16	2.1%	34	-0.8%	31	0.0%	63	0.0%	
19.2K	11	0.0%	23	0.0%	12	0.2%	25	0.2%	23	0.0%	47	0.0%	
28.8K	7	0.0%	15	0.0%	8	-3.5%	16	2.1%	15	0.0%	31	0.0%	
38.4K	5	0.0%	11	0.0%	6	-7.0%	12	0.2%	11	0.0%	23	0.0%	
57.6K	3	0.0%	7	0.0%	3	8.5%	8	-3.5%	7	0.0%	15	0.0%	
76.8K	2	0.0%	5	0.0%	2	8.5%	6	-7.0%	5	0.0%	11	0.0%	
115.2K	1	0.0%	3	0.0%	1	8.5%	3	8.5%	3	0.0%	7	0.0%	
230.4K	-	-	1	0.0%	-	-	1	8.5%	1	0.0%	3	0.0%	
250K	-	-	1	-7.8%	-	-	1	0.0%	1	-7.8%	3	-7.8%	
0.5M	-	-	-	-	-	-	-	-	-	-	1	-7.8%	
	fOSC=	=8.00MHz			fOSC=11.	.0592MHz			fOSC=14.7456MHz				
Baud	U2X=0)	U2X=1		U2X=0		U2X=1		U2X=0		U2X=1		
Rate	UBA UD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAUD	ERROR	UBAU D	ERROR	UBAUD	ERROR	
2400	207	0.2%	-	-	-	-	-	-	-	-	-	-	
4800	103	0.2%	207	0.2%	143	0.0%	-	-	191	0.0%	-	-	
9600	51	0.2%	103	0.2%	71	0.0%	143	0.0%	95	0.0%	191	0.0%	
14.4K	34	-0.8%	68	0.6%	47	0.0%	95	0.0%	63	0.0%	127	0.0%	
19.2K	25	0.2%	51	0.2%	35	0.0%	71	0.0%	47	0.0%	95	0.0%	
28.8K	16	2.1%	34	-0.8%	23	0.0%	47	0.0%	31	0.0%	63	0.0%	
38.4K	12	0.2%	25	0.2%	17	0.0%	35	0.0%	23	0.0%	47	0.0%	
57.6K	8	-3.5%	16	2.1%	11	0.0%	23	0.0%	15	0.0%	31	0.0%	
76.8K	6	-7.0%	12	0.2%	8	0.0%	17	0.0%	11	0.0%	23	0.0%	
115.2K	3	8.5%	8	-3.5%	5	0.0%	11	0.0%	7	0.0%	15	0.0%	
230.4K	1	8.5%	3	8.5%	2	0.0%	5	0.0%	3	0.0%	7	0.0%	
250K	1	0.0%	3	0.0%	2	-7.8%	5	-7.8%	3	-7.8%	6	5.3%	
0.5M	-	-	1	0.0%	-	-	2	-7.8%	1	-7.8%	3	-7.8%	
1M	-	-	-	-	-	-	-	-	-	-	1	-7.8%	

16.14 0% error baud rate

USART2 system of A96G140/A96G148/A96A148 supports floating point counter logic for 0% error of baud rate. By using 8-bit floating point counter logic, cumulative error to below the decimal point can be removed.

Floating point counter value is defined by baud rate error. In the baud rate formula, BAUD is presented in the integer count value. For example, If you want to use the 57600 baud rate (fXIN = 16MHz), integer count value must be 16.36 value (BAUD+1 = 1600000/(16×57600) = 17.36). Here, the accurate BAUD value is 16.36. To achieve the 0% error of baud rate, floating point counter value must be 164 ((17-16.36) x 256 \approx 164) and BAUD value must be 17. Namely you have to write the 164 (decimal number) in USART_FPCR and 17 (decimal number) in USART_BAUD.

Figure 113. 0% Error Baud Rate Block Diagram

17 Power down operation

A96G140/A96G148/A96A148 has two power-down modes to minimize the power consumption of the device. In power down mode, power consumption is reduced considerably. A96G140/A96G148/A96A148 provides three kinds of power saving functions such as Main-IDLE mode, Sub-IDLE mode and STOP mode. During one of these three modes, program will be stopped.

17.1 Peripheral operation in IDLE/ STOP mode

Table 38 shows operation status of each peripheral in IDLE mode and STOP mode.

Peripheral	IDLE mode	STOP mode
CPU	ALL CPU operations are disabled.	ALL CPU operations are disabled.
RAM	Retains.	Retains.
Basic Interval Timer	Operates continuously.	Stops (can be operated with WDTRC OSC).
Watch Dog Timer	Operates continuously.	Stops (can be operated with WDTRC OSC).
Watch Timer	Operates continuously.	Stops (can be operated with sub clock).
Timer0~4	Operates continuously.	Halts (only when the event counter mode is enabled, timer operates normally).
ADC	Operates continuously.	Stops.
BUZ	Operates continuously.	Stops.
USI0/1	Operates continuously.	Only operates with external clock.
Internal OSC (32MHz)	Oscillates.	Stops when the system clock (fx) is fHSIRC.
WDTRC OSC (128kHz)	Can be operated with setting value.	Can be operated programmable.
Main OSC (0.4~12MHz)	Oscillates.	Stops when fx = fXIN.
Sub OSC (32.768kHz)	Oscillates.	Can be operated programmable.
I/O Port	Retains.	Retains.
Control Register	Retains.	Retains.
Address Data Bus	Retains.	Retains.
Release	By RESET	By RESET
Method	All Interrupts	Timer Interrupt (EC0, EC1, EC3)
		External Interrupt
		 USART2 by RX, WT (sub clock), WDT
		USI0/1 by RX, I2C(Slave mode)

 Table 39. Peripheral Operation Status during Power Down Mode

17.2 IDLE mode

Power control register is set to '01h' to enter into IDLE mode. In IDLE mode, internal oscillation circuits remain active. Oscillation continues and peripherals are operated normally, but CPU stops.

It is released by reset or an interrupt. To be released by an interrupt, the interrupt should be enabled before IDLE mode. If using a reset, because the device is initialized, registers become to have reset values.

Figure 114. IDLE Mode Release Timing by an External Interrupt

17.3 STOP mode

Power control register is set to '03H' to enter into STOP mode. In STOP mode, the selected oscillator, system clock and peripheral clock is stopped, but watch timer can be continued to operate with sub clock.

With the clock frozen, all functions are stopped, but the on-chip RAM and control registers are held. For example, If the internal RC oscillator (fIRC) is selected for the system clock and the sub clock (fSUB) is oscillated, the internal RC oscillator stops oscillation and the sub clock is continuously oscillated in stop mode. At that time, the watch timer can be operated with the sub clock.

Sources to exit from STOP mode is hardware reset and interrupts. The hardware reset re-defines all control registers. When awaking from STOP mode, enough oscillation stabilization time is required to normal operation. Figure 111 shows the timing diagram.

As shown in the figure 111, when released from STOP mode, the basic interval timer is activated on wake-up. Therefore, before STOP instruction, a user must set relevant prescale divide ratio to have long enough time. This guarantees that an oscillator has started and stabilized.

Figure 115. STOP Mode Release Timing by External Interrupt

17.4 Released operation of STOP mode

After STOP mode is released, operation begins according to content of related interrupt register just before STOP mode starts (refer to figure.112). If the global interrupt Enable Flag (IE.EA)is set to `1`, the STOP mode is released by a certain interrupt of which interrupt enable flag = `1` and the CPU jumps to the relevant interrupt service routine. Even if the IE.EA bit is cleared to '0', the STOP mode is released by the interrupt of which the interrupt enable flag is set to '1'.

Figure 116. STOP Mode Release Flow

17.5 Register map

Table 40. Power Down Operation Register Map

Name	Address	Direction	Default	Description
PCON	87H	R/W	00H	Power Control Register

17.6 Register description

PCON (Power Control Register): 87H

7	6	5	4	3	2	1	0	
PCON7	-	-	-	PCON3	PCON2	PCON1	PCON0	
R/W	-	-	-	R/W	R/W	R/W	R/W	
						Initial	value: 00H	
	PCC	DN[7:0] F	Power Control					
		()1H	IDLE mode en	able			
		C)3H	STOP mode e	nable			
		(Other Values	les Normal operation				

NOTES:

- 1. To enter into IDLE mode, PCON must be set to '01H'.
- 2. To enter into STOP mode, PCON must be set to '03H'.
- 3. The PCON register is automatically cleared by a release signal in STOP/IDLE mode.
- Three or more NOP instructions must immediately follow the instruction that make the device enter into STOP/IDLE mode. Refer to the following examples.

Evenuela			European la O					
Example	; 1		Example 2					
MOV	PCON, #01H	; IDLE mode	MOV	PCON, #03H	; STOP mode			
NOP			NOP					
NOP			NOP					
NOP			NOP					

18 Reset

Table 40 shows hardware setting values of main peripherals.

ŭ					
On Chip Hardware	Initial Value				
Program Counter (PC)	0000h				
Accumulator	00h				
Stack Pointer (SP)	07h				
Peripheral Clock	On				
Control Register	Refer to the Peripheral Registers				

Table 41. Hardware Setting Values in Res
--

A96G140/A96G148/A96A148 has five types of reset sources as shown in the followings:

- External RESETB
- Power ON RESET (POR)
- WDT Overflow Reset (In the case of WDTEN = `1`)
- Low Voltage Reset (In the case of LVREN = `0 `)
- OCD Reset

18.1 Reset block diagram

In this section, reset unit is described in a block diagram.

Figure 117. Reset Block Diagram

18.2 Power on reset

When rising device power, POR (Power On Reset) has a function to reset a device. If POR is used, it executes the device RESET function instead of the RESET IC or the RESET circuits.

Figure 118. Fast VDD Rising Time

Figure 119. Internal RESET Release Timing On Power-Up

Figure 120. Configuration Timing when Power-on

Figure 121. Boot Process Waveform

Process	Description	Remarks				
1	No Operation	0.7V to 0.9V				
	LSIRC (128KHz) ON					
2	1st POR level Detection	About 1.1V to 1.3V				
3	 (LSIRC 128KHz/32)x32h Delay section (=10ms) 	Slew Rate >= 0.025V/ms				
	 VDD input voltage must rise over than flash operating voltage for Configure option read 					
4	Configure option read point	 About 1.6V to 1.8V Configure Value is determined by Writing Option 				
5	Rising section to Reset Release Level	16ms point after POR or Ext_reset release				
6	Reset Release section (BIT overflow) I. after16ms, after External Reset Release (External reset) II. 16ms point after POR (POR only)	BIT is used for Peripheral stability				
7	Normal operation					

Table 42.	Boot Process	Description

18.3 External resetb input

External resetb is input to a Schmitt trigger. If the resetb pin is held with low for at least 50us over within the operating voltage range and stable oscillation, it is applied and the internal state is initialized. After reset state becomes '1', it needs stabilization time with 16ms and after the stable state, the internal reset becomes '1'. The reset process step needs 5 oscillator clocks. And the program execution starts at the vector address stored at address 0000H.

Figure 122. Timing Diagram after RESET

Figure 123. Oscillator generating waveform example

As shown figure 119, the stable generating time is not included in the start-up time. The resetb pin has a pull-up register by hardware.

18.4 Low voltage reset process

A96G140/A96G148/A96A148 has an On-chip brown-out detection circuit (BOD) for monitoring VDD level during operation by comparing it to a fixed trigger level. Trigger level for the BOD can be selected by configuring LVRVS[3:0] bits to be 1.61V, 1.68V, 1.77V, 1.88V, 2.00V, 2.13V, 2.28V, 2.46V, 2.68V, 2.81V, 3.06V, 3.21V, 3.56V, 3.73V, 3.91V, 4.25V.

In the STOP mode, this will contribute significantly to the total current consumption. So to minimize the current consumption, LVREN bit is set to off by software.

Figure 124. Block Diagram of LVR

Figure 125. Internal Reset at Power Fail Situation

Figure 126. Configuration Timing When LVR RESET

18.5 LVI block diagram

Figure 127. LVI Block Diagram

18.6 Register Map

Name	Address	Direction	Default	Description					
RSTFR	E8H	R/W	80H	Reset Flag Register					
LVRCR	D8H	R/W	00H	Low Voltage Reset Control Register					
LVICR	86H	R/W	00H	Low Voltage Indicator Control Register					

Table 43. Reset Operation Register Map

18.7 Reset Operation Register Description

RSTFR (Reset Flag Register): E8H

7	6	5	4	3	2	1	0		
PORF	EXTRF	WDTRF	OCDRF	LVRF	-	-	-		
RW	RW	RW	RW	RW	-	-	-		
						Initial	value: 80H		
	POR	RF I	Power-On Res	et flag bit. The	bit is reset by	writing '0' to th	nis bit.		
		(0 No det	ection					
			1 Detect	ion					
	EXT	RF I	External Reset bit or by Power	(RESETB) flag -On Reset.	g bit. The bit is	reset by writir	ng '0' to this		
		(0 No det	ection					
			1 Detection						
	WDT	rrf	Watch Dog Reset flag bit. The bit is reset by writing '0' to this bit or by Power-On Reset.						
		(0 No det	ection					
			1 Detect	ion					
	OCE	DRF 0	On-chip debugger reset flag bit. The bit reset by writing '0' to this bit or by Power-On Reset						
		(0 No det	ection					
			1 Detect	ion					
	LVR	F L	_ow Voltage Re by Power-On R	eset flag bit. T eset.	he bit is reset	by writing '0' t	o this bit or		
		(No det	ection					
		Î	1 Detecti	on					

NOTES:

- 1. When the Power-On Reset occurs, the PORF bit is only set to "1", the other flag (WDTRF) bits are all cleared to "0".
- 2. When the Power-On Reset occurs, the EXTRF bit is unknown, at that time, the EXTRF bit can be set to "1" when External Reset (RESETB) occurs.
- 3. When the Power-On Reset occurs, the LVRF bit is unknown, at that time, the LVRF bit can be set to "1" when LVR Reset occurs.
- 4. When a reset except the POR occurs, the corresponding flag bit is only set to "1", the other flag bits are kept in the previous values.

7	6	5	4		3	2	1	0
-	-	-	LVRVS	3 LV	/RVS2	LVRVS1	LVRVS0	LVREN
-	-	-	RW	ļ	RW	RW	RW	RW
							Initial	value: 00H
	LVR	VS[3:0] L	VR Voltag	ge Select				
		L	VRVS3	LVRVS2	LVRVS1	LVRVS0	Description	
		C)	0	0	0	1.61V	
		C)	0	0	1	1.68V	
		C)	0	1	0	1.77V	
		C)	0	1	1	1.88V	
		C)	1	0	0	2.00V	
		C)	1	0	1	2.13V	
		C)	1	1	0	2.28V	
		C)	1	1	1	2.46V	
		1		0	0	0	2.68V	
		1		0	0	1	2.81V	
		1		0	1	0	3.06V	
		1		0	1	1	3.21V	
		1		1	0	0	3.56V	
		1		1	0	1	3.73V	
		1		1	1	0	3.91V	
		1		1	1	1	4.25V	
	LVR	EN L	VR Opera	ation				
		C)	LVR Enal	ole			
		1		LVR Disa	ble			

LVRCR (Low Voltage Reset Control Register): D8H

NOTES:

- 1. The LVRVS[3:0] bits are cleared by a power-on reset but are retained by other reset signals.
- 2. The LVRVS[3:0] bits should be set to '0000b' while LVREN bit is "1".

7	6	5	4		3	2	1	0
-	-	LVIF	LVIEN	N L	VILS3	LVILS2	LVILS1	LVILS0
-	-	RW	RW		RW	RW	RW	RW
							Initial	value: 00H
	LVIF	-	Low Volta	ge Indicato	or Flag Bit			
			1 0	No detection	on			
			1 [
	LVIE	EN	LVI Enable	e/Disable				
			0 [Disable				
			1 E	Enable				
	LVIVS[3:0] LVI Level Select							
			LVIVS3	LVIVS2	LVIVS1	LVIVS0	Description	
			0	0	0	0	Not available	
			0	0	0	1	Not available	
			0	0	1	0	Not available	
			0	0	1	1	1.88V	
			0	1	0	0	2.00V	
			0	1	0	1	2.13V	
			0	1	1	0	2.28V	
			0	1	1	1	2.46V	
			1	0	0	0	2.68V	
			1	0	0	1	2.81V	
			1	0	1	0	3.06V	
			1	0	1	1	3.21V	
			1	1	0	0	3.56V	
			1	1	0	1	3.73V	
			1	1	1	0	3.91V	
			1	1	1	1	4.25V	

LVICR (Low Voltage Indicator Control Register): 86H

19 Memory programming

A96G140/A96G148/A96A148 has flash memory to which a program can be written, erased, and overwritten while mounted on the board. Serial ISP mode is supported.

Flash of A96G140/A96G148/A96A148 features the followings:

- Flash Size : 64Kbytes
- Single power supply program and erase
- Command interface for fast program and erase operation
- Up to 30,000 program/erase cycles at typical voltage and temperature for flash memory
- Security feature

19.1 Flash control and status registers

Registers controlling Flash and Data EEPROM are Mode Register (FEMR), Control Register (FECR), Status Register (FESR), Time Control Register (FETCR), Address Low Register x (FEARLx), Address Middle Register x (FEARMx), address High Register (FEARH). They are mapped to SFR area and can be accessed only in programming mode.

19.1.1 Register map

······									
Name	Address	Dir	Default	Description					
FEMR	1020H	R/W	00H	Flash Mode Register					
FECR	1021H	R/W	03H	Flash Control Register					
FESR	1022H	R/W	80H	Flash Status Register					
FETCR	1023H	R/W	00H	Flash Time Control Register					
FEARL1	1025H	R/W	00H	Flash Address Low Register 1					
FEARM1	1024H	R/W	00H	Flash Address Middle Register 1					
FEARL	102AH	R/W	00H	Flash Address Low Register					
FEARM	1029H	R/W	00H	Flash Address Middle Register					
FEARH	1028H	R/W	00H	Flash Address High Register					

Table 44. Flash Control and Status Register Map

19.1.2 Register description

FEMR (Flash Mode Register): 1020H

7	6	5	4	3	2	1	0		
FSEL	-	PGM	ERASE	PBUFF	OTPE	VFY	FEEN		
RW	-	RW	RW	RW	RW	RW	RW		
						Initial	value: 00H		
	FSE	L S	Select flash me	emory.					
		(D Desele	ect flash memo	ory				
			1 Select	flash memory					
	PGN	Л E	Enable prograr	n or program v	erify mode wit	h VFY			
		() Disabl	e program or p	program verify	mode			
			1 Enable	e program or p	rogram verify r	mode			
	ERA	SE E	Enable erase or erase verify mode with VFY						
		() Disabl	e erase or eras	se verify mode	1			
			1 Enable	e erase or eras	e verify mode				
	PBU	JFF S	Select page bu	ffer					
		(D Desele	ect page buffer					
			1 Select	page buffer					
	OTF	Ϋ́Ε S	Select OTP are	a instead of p	rogram memoi	ſy			
		(D Desele	ect OTP area					
		í	1 Select	OTP area					
	VFY	, S	Set program or	erase verify m	node with PGM	1 or ERASE			
		F	Program Verify	: PGM=1, VFY	′=1				
		E	Erase Verify: E	RASE=1, VFY	′ = 1				
	FEE	N E	Enable prograr ead as normal	n and erase o mode	f Flash. When	inactive, it is	possible to		
		(D Disabl	e program and	lerase				
			1 Enable	e program and	erase				

7	6	5	4	3	2	1	0
AEF	-	EXIT1	EXIT0	WRITE	READ	nFERST	nPBRST
R/W	-	RW	RW	RW	RW	RW	RW
						Initial	value: 03H
	AEF		Enable flash bi	ulk erase mode	9		
			0 Disabl	e bulk erase m	node of Flash r	nemory	
			1 Enable	e bulk erase m	ode of Flash m	nemory	
	EXI	Γ[1:0]	Exit from prog	ram mode. It is	cleared autor	natically after ?	1 clock
			EXIT1 E	XIT0 Des	scription		
			0 0	Dor	n't exit from pro	ogram mode	
			0 1	Dor	n't exit from pro	ogram mode	
			1 0	Dor	n't exit from pro	ogram mode	
			1 1	Exit	from program	mode	
	WRI	TE	Start to progra clock	m or erase of	Flash. It is clea	ared automatic	cally after 1
			0 No op	eration			
			1 Start t	o program or e	rase of Flash		
	REA	D	Start auto-verif	y of Flash. It is	cleared auton	natically after 1	clock
			0 No op	eration			
			1 Start a	uto-verify of F	lash (Checksu	m or CRC16)	
	nFER	ST	Reset Flash co	ntrol logic. It is	set automatic	ally after 1 cloo	ck
			0	Reset Flash co	ontrol logic		
			1	No operation (default)		
	nPBR	ST	Reset page bu	ffer with PBUF	F. It is set auto	omatically after	1 clock
			PBUFF nl	PBRST De	scription		
			U 0	Pa	ge buffer reset		
			1 0	Pa	ge butter selec	t register rese	t
			x 1	No	operation (def	ault)	

FECR (Flash Control Register): 1021H

NOTE: WRITE and READ bits can be used in program, erase and verify mode with FEAR registers. Read or writes for memory cell or page buffer uses read and write enable signals from memory controller. Indirect address mode with FEAR is only allowed to program, erase and verify

7	6	5	4	3	2	1	0		
PEVBSY	REMAPSI	REMAP-	-	ROMINT	WMODE	EMODE	VMODE		
R	R/W	R/W	-	R/W	R	R	R		
						Initial	value: 80H		
	PEV	BSY (Operation status flag. It is cleared automatically when operation starts. Operations are program, erase or verification						
		(0 Busy (Operation proc	cessing)				
			1 Compl	ete Operation					
	REM	IAPSI I	Remapping for check the serial ID.						
		(0 No ope	eration					
			1 Remap	oping OTP are	a to FFC0~FF	FF.			
	REM	IAP -	Test Only.						
	ROM	/INT I	Flash interrupt starts. Active in	request flag. A program/eras	Auto-cleared w e/verify comple	rhen program/∉ etion	erase/verify		
		(0 No inte	errupt request.					
			1 Interru	pt request.					
	WM	ODE V	Write mode flag	9					
	EMC	DDE I	Erase mode fla	g					
	VMC	DDE V	Verify mode fla	g					

FESR (Flash Status Register): 1022H

FEARL1 (Flash address low Register 1): 1025H

7	6	5	4	3	2	1	0
ARL17	ARL16	ARL15	ARL14	ARL13	ARL12	ARL11	ARL10
W	W	W	W	W	W	W	W
						Initial	value: 00H
	ARL	.1[7:0]	Flash address	low 1			

FEARM1 (Flash address middle Register 1): 1024H

7	6	5	4	3	2	1	0	
ARM17	ARM16	ARM15	ARM14	ARM13	ARM12	ARM11	ARM10	
W	W	W	W	W	W	W	W	
ARM1[7:0] Flash address middle 1								
FEARL (Flash address low Register): 102AH								

7 6 5 4 3 2 1 0 ARL7 ARL6 ARL5 ARL4 ARL3 ARL2 ARL1 ARL0 W W W W W W W W Initial value: 00H

ARL[7:0]

Flash address low

FEARM (Flash address middle Register): 1029H

FEARH (Flash address high Register): 1028H

7	6	5	4	3	2	1	0
ARH7	ARH6	ARH5	ARH4	ARH3	ARH2	ARH1	ARH0
W	W	W	W	W	W	W	W
						Initial	value: 00H
	ARF	I [7:0]	Flash address	high			

NOTES:

- 1. FEAR registers are used for program, erase and auto-verify. In program and erase mode, it is page address and ignored the same least significant bits as the number of bits of page address. In auto-verify mode, address increases automatically by one.
- 2. EARs are write-only register. Reading these registers returns 24-bit checksum result.
- 3. When calculating flash checksum, the lower 4 bits of start address are calculated as 0x0000 and the lower 4 bits of end address as 0x1111 for protection.
- 4. This device can support internal Checksum calculation, device verification time will be decreased dramatically.
- 5. Checksum cannot detect error address or error bit, but it is quite good feature in mass product programming.
- 6. Device data read out time takes few seconds. The execution time per byte is 4~5ms based on 16MHz.

Figure 128. Read Device Internal Checksum (Full Size)

Figure 129. Read Device Internal Checksum (User Define Size)

7	6	5	4	3	2	1	0
TCR7	TCR6	TCR5	TCR4	TCR3	TCR2	TCR1	TCR0
R/W	RW	RW	RW	RW	RW	RW	RW
						Initial	value: 00H

FETCR (Flash Time control Register): 1023H

TCR[7:0] Flash Time control

Program and erase time is controlled by setting FETCR register. Program and erase timer uses 10-bit counter. It increases by one at each RING clock frequency (f_{LSIRC}=128KHz).

It is cleared when program or erase starts. Timer stops when 10-bit counter is same to FETCR. PEVBSY is cleared when program, erase or verify starts and set when program, erase or verify stops.

• Max program/erase time at INTRC/256 clock : (255+1) * 2 * (7.8125us) = 4.0ms

In the case of ±10% of error rate of counter source clock, program or erase time is 3.6~4.4ms

* Program/erase time calculation

- For page write or erase = Tpe = (TCON+1) * 2 * (f_{LSIRC})
- For bulk erase, Tbe = (TCON+1) * 4 * (f_{LSIRC})
- Recommended bulk erase time : FETCR = 57h
- Recommended program / page erase time : FETCR = AFh

Table 45. Program and Erase Time

	Min	Тур	Мах	Unit
Program/erase time	2.4	2.5	2.6	Ms

19.2 Memory map

19.2.1Flash memory map

Program memory uses 64K bytes of flash memory. It is read by byte and written by byte or page. One page is 64-bytes

Figure 130. Flash Memory Map

Figure 131. Address Configuration of Flash Memory

19.3 Serial in-system program mode

Serial in-system program uses the interface of debugger which uses two wires. Refer to <u>chapter 20</u> <u>Development tools</u> in details about debugger.

19.3.1 Flash operation

Configuration (This Configuration is just used for follow description)

7	6	5	4	3	2	1	0
-	FEMR[4] & [1]	FEMR[5] & [1]	-	-	FEMR[2]	FECR[6]	FECR[7]
-	ERASE&VFY	PGM&VFY	-	-	OTPE	AEE	AEF

Figure 132. The Sequence of Page Program and Erase of Flash Memory

Figure 133. The Sequence of Bulk Erase of Flash Memory

Flash read

- ① Enter OCD (=ISP) mode.
- ② Set ENBDM bit of BCR.
- ③ Enable debug and Request debug mode.
- ④ Read data from Flash.

Enable program mode

- 1 Enter OCD(=ISP) mode.^{NOTE1}
- 2 Set ENBDM bit of BCR.
- ③ Enable debug and Request debug mode.
- ④ Enter program/erase mode sequence.^{NOTE2}
 - A. Write 0xAA to 0xF555.
 - B. Write 0x55 to 0xFAAA.
 - C. Write 0xA5 to 0xF555.

NOTES:

- 1. Refer to how to enter ISP mode.
- 2. Command sequence to activate Flash write/erase mode. It is composed of sequentially writing data of Flash memory.

Flash write mode

- 1) Enable program mode.
- 2 Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- ③ Select page buffer. FEMR:1000_1001
- ④ Write data to page buffer (Address automatically increases by twin).
- 5 Set write mode. FEMR:1010_0001
- 6 Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- ⑦ Set FETCR.
- 8 Start program. FECR:0000_1011
- (9) Insert one NOP operation
- 10 Read FESR until PEVBSY is 1.
- 1 Repeat 2 to 8 until all pages are written.

Flash page erase mode

- 1) Enable program mode.
- ② Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- ③ Select page buffer. FEMR:1000_1001
- ④ Write 'h00 to page buffer. (Data value is not important.)
- 5 Set erase mode. FEMR:1001_0001
- 6 Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- ⑦ Set FETCR.
- 8 Start erase. FECR:0000_1011
- (9) Insert one NOP operation
- 10 Read FESR until PEVBSY is 1.
- (1) Repeat (2) to (8) until all pages are erased

Flash bulk erase mode

- 1) Enable program mode.
- 2 Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- ③ Select page buffer. FEMR:1000_1001
- ④ Write 'h00 to page buffer. (Data value is not important.)
- Set erase mode. FEMR:1001_0001.
 Only main cell area is erased.
 For bulk erase including OTP area, select OTP area (set FEMR to 1000_1101).
- 6 Set FETCR
- ⑦ Start bulk erase. FECR:1000_1011
- (8) Insert one NOP operation
- (9) Read FESR until PEVBSY is 1.

Flash OTP area read mode

- ① Enter OCD (=ISP) mode.
- 2 Set ENBDM bit of BCR.
- ③ Enable debug and Request debug mode.
- ④ Select OTP area. FEMR:1000_0101
- 5 Read data from Flash.

Flash OTP area write mode

- 1) Enable program mode.
- ② Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- ③ Select page buffer. FEMR:1000_1001
- ④ Write data to page buffer (Address automatically increases by twin).
- (5) Set write mode and select OTP area. FEMR:1010_0101
- 6 Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- ⑦ Set FETCR.
- 8 Start program. FECR:0000_1011
- (9) Insert one NOP operation
- 10 Read FESR until PEVBSY is 1.

Flash OTP area erase mode

- 1) Enable program mode.
- 2 Reset page buffer. FEMR: 1000_0001 FECR:0000_0010
- ③ Select page buffer. FEMR:1000_1001
- ④ Write 'h00 to page buffer. (Data value is not important.)
- (5) Set erase mode and select OTP area. FEMR:1001_0101
- 6 Set page address. FEARH:FEARM:FEARL=20'hx_xxxx
- ⑦ Set FETCR.
- 8 Start erase. FECR:0000_1011
- (9) Insert one NOP operation
- 10 Read FESR until PEVBSY is 1.

Flash program verify mode

- 1) Enable program mode.
- ② Set program verify mode. FEMR:1010_0011
- 3 Read data from Flash.

OTP program verify mode

- ① Enable program mode.
- ② Set program verify mode. FEMR:1010_0111
- ③ Read data from Flash.

Flash erase verify mode

- 1 Enable program mode.
- ② Set erase verify mode. FEMR:1001_0011
- 3 Read data from Flash

Flash page buffer read

- 1) Enable program mode.
- 2 Select page buffer. FEMR:1000_1001
- 3 Read data from Flash.

Summary of flash program/erase mode

Table 46. Operation Mode

Operat	ion mode	Description		
	Flash read	Read cell by byte.		
	Flash write	Write cell by bytes or page.		
	Flash page erase	Erase cell by page.		
Flash	Flash bulk erase	Erase the whole cells.		
	Flash program verify	Read cell in verify mode after programming.		
	Flash erase verify	Read cell in verify mode after erase.		
	Flash page buffer load	Load data to page buffer.		

19.4 Mode entrance method of ISP mode

19.4.1 Mode entrance method for ISP

Table 47. Mode entrance method for ISP

TARGET MODE	DSDA	DSCL	DSDA
OCD(ISP)	ʻhC	ʻhC	ʻhC

Figure 134. ISP Mode

19.5 Security

A96G140/A96G148/A96A148 provides Lock bits which can be left un-programmed ("0") or can be programmed ("1") to obtain the additional features listed in table 47. The Lock bit can only be erased to "0" with the bulk erase command and a value of more than 0x40 at FETCR.

	USE	USER MODE						ISP MODE								
	FLASH			ОТР			FLASH			ОТР						
LOCKF	R	W	PE	BE	R	W	PE	BE	R	W	PE	BE	R	W	PE	BE
0	0	0	0	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0
1	0	0	0	X	X	X	X	X	X	X	X	0	0	X	X	0

Table 48.	Security	Policy	usina	Lock	Bits
	occurry	1 01109	using	LOOK	Ditto

NOTES:

1. LOCKF: Lock bit of Flash memory

2. R: Read

3. W: Write

- 4. PE: Page erase
- 5. BE: Bulk Erase
- 6. O: Operation is possible.
- 7. X: Operation is impossible.

19.6 Configure option

For the configure option control, corresponding data should be written in the configure option area (003EH to 003FH) by programmer (writer tools).

CONFIGURE OPTION 2: ROM Address 0001H

7	6	5	4	3	2	1	0		
R_P	HL	-	VAPEN	-	-	-	RSTS		
						Initial	value: 00H		
	R_P		Code Read Pr	otection					
			0 Disa	able					
			1 Ena	ble					
	HL			otection					
				0 Disable					
			1 Enable						
	VAPEN			Vector area (00H~FFH) Protection					
			0 Disa	able Protection	1				
			1 Ena	ble Protection					
	RST	S	Select RESETB pin						
			0 Disa	able RESETB	pin(P55)				
			1 Ena	ble RESETB p	bin				

NOTE: Code write protection and Vector area protection are disabled at OCD Mode.

CONFIGURE OPTION 1: ROM Address 0000H (A96G140 64K Series)

7	6	5	4	3	2	1	0			
-	-	-	-	PAEN	PASS2	PASS1	PASS0			
	· · ·					Initial	value: 00H			
	PAEN		Enable Specific Area Write Protection							
				Disable Protection						
		1	1 Enable Protection							
	PAS	S [2:0] Se	Select Specific Area for Write Protection							
		NC	NOTE: When PAEN = '1', it is applied.							
		PA	SS2 PASS1	PASS0	Description					
		0	0	0	0.7Kbytes (Add	ress 0100H – ()3FFH)			
		0	0	1	1.7Kbytes (Add	ress 0100H – ()7FFH)			
		0	1	0	2.7Kbytes (Add	ress 0100H – ()BFFH)			
		0	1	1	3.7Kbytes (Add	ress 0100H – ()FFFH)			
		1	0	0	61.7Kbytes (Add	dress 0100H –	F7FFH)			
		1	0	1	62.7Kbytes (Add	dress 0100H –	FBFFH)			
		1	1	0	63.2Kbytes (Add	dress 0100H –	FDFFH)			
		1	1	1	63.5Kbytes (Add	dress 0100H –	FEFFH)			

NOTE: Specific area write protection are disabled at OCD Mode.

7	6	5	4	3	2	1	0			
-	-	-	-	PAEN	PASS2	PASS1	PASS0			
	· · ·					Initial	value: 00H			
	PAEN		Enable Specific Area Write Protection							
		0		Disable F	Protection					
		1	1 Enable Protection							
	PAS	S [2:0] Se	Select Specific Area for Write Protection							
		NC	TE: When PA	EN = '1', it i	s applied.					
		PA	SS2 PASS1	PASS0	Description					
		0	0	0	0.7Kbytes (Add	ress 0100H – (D3FFH)			
		0	0	1	1.7Kbytes (Add	ress 0100H – (07FFH)			
		0	1	0	2.7Kbytes (Add	ress 0100H – ()BFFH)			
		0	1	1	3.7Kbytes (Add	ress 0100H – (OFFFH)			
		1	0	0	29.7Kbytes (Add	dress 0100H –	77FFH)			
		1	0	1	30.7Kbytes (Add	dress 0100H –	7BFFH)			
		1	1	0	31.2Kbytes (Add	dress 0100H –	7DFFH)			
		1	1	1	31.5Kbytes (Add	dress 0100H –	7EFFH)			

CONFIGURE OPTION 1: ROM Address 0000H (A96G148/A96A148 32K Series)

NOTE: Specific area write protection are disabled at OCD Mode.

20 Development tools

This chapter introduces a wide range of development tools for microcontrollers. ABOV offers software tools, debuggers, and programmers to help a user in generating right results to match target applications. ABOV supports entire developer ecosystem of the customers.

20.1 Compiler

ABOV semiconductor does not provide any compiler for the A96G140/A96G148/A96A148. Regarding the compilers, it is recommended to consult with your compiler provider.

Since the A96G140/A96G148/A96A148 has the Mentor 8051 as a core, and ROM is smaller than 64Kbytes in size, a developer can use any standard 8051 compiler from other providers.

20.2 Core and debug tool information

ABOV's microcontroller uses OCD (On-Chip Debugger) interface for debugging, which is ABOV's own interface. The OCD not only monitors and controls the core, but also supports the read and write operations of external memory and devices. In addition, it supports memory monitoring and break functions.

Debug interfaces such as OCD interfaces enable microcontrollers to write to internal programmable memory, allowing them to support ISP (In-System Program) that makes possible to write as a single chip or as an embedded chip in the system. Table 49 provides information of the core and debug emulation interface.

	Description	Remark
Device Name	A9xXxxx	
Series	94/ 95/ 96/ 97 series	
Core	M8051/ CM8051	
Extended Stack Pointer	Yes/ no	94, 97 series only
Debug Interface	OCD 1/ OCD 2	
Number of Break Point	4/8	
Real-time Monitoring	Yes/ no	OCD 2 only
Run Flag Port	Yes/ no	OCD 2 option

Table 49. Information of Core and Debug Emulation Interfaces

NOTES:

- 1. The A96G140/A96G148/A96A148 has the 96 series core and OCD 1 interface.
- 2. The A96G140/A96G148/A96A148 can be operated with OCD II dongle too, because the OCD II dongle includes all of OCD1 functions.
- 3. The 95 series core is the old version of the 96 series core.

20.2.1 Feature of 94/96/97 series core

ABOV's 8-bit microcontroller contains the M8051/CM8051 core that is an improved version of the 8051. The M8051/CM8051 core is compatible with the 8051, and reduces time of operation cycles. It makes development easier by providing the OCD debug function.

ABOV's 8-bit microcontroller has a core of the 94-series, 96-series, or 97-series that is basically compatible with the 8051 series at the instruction set level. The cores in each series use different Debug Interfaces, as shown in Table 50.

······································				
	Core	Debug Interface		
96 Series	M8051	OCD 1		
97 Series	M8051	OCD 2		
94 Series	CM8051	OCD 2		

Table 50. Cores and Debug Interfaces by Series

	96 Series	97 Series	94 Series		
CPU Core	M8051	M8051	CM8051		
Cycle Compatible with MCS51	1/6	1/6	No		
OCD Function	OCD 1	OCD 2	OCD 2		
Program BUS	8-bit	8-bit			
Data Bus	8-bit IRAM/ XRAM se	parated	8-bit single SRAM		
EA Auto Clear NOTE1	Yes	Yes	Yes		
EA=0, Idle/ Stope Mode Wake up	Yes	Yes	Yes		
Interrupt Priority NOTE2	6 group x 4 level	Interrupt x 4 level	Interrupt x 2 level		
Nested Interrupt Priority	4 level	4 level	Interrupt x 2 level (max. 4 times)		
SFR BUS (read/ write)	Two ports	Two ports	Single port		
Stack Extension	Х	0	0		
Register	SRAM				
Register Bank	4				
CPU/ Flash Clock Ratio	x 1				
Pipeline	No	No	2-stage		
			(IF + ID/ EX)		
DHRY Stone Score (I8051: 1.00)	6.0	6.0	8.4		
Average Instruction Set Exe. Cycle Compare with i8051	x 6.0	x 6.0	x 6.4		
Power Consumption/ DHRY (@synthesis)	52.27uA/ MHz	52.27uA/ MHz	30.19 uA/ MHz		

Features of each series are compared in Table 51.

Table 51. Feature Comparison Chart By Series and Core

NOTES:

- 1. EA means that All Interrupt Enable bit or Disable bit (Standard 8051).
- 2. Group: When a programmer selects a specific interrupt (e.g. Interrupt1), Whole interrupts: 0, 6, 12, and 18 have higher priorities.
- 3. The A96G140/A96G148/A96A148 has the 96 series core and OCD 1 interface.
- 4. The A96G140/A96G148/A96A148 can be operated with the OCD II dongle too, because the OCD II dongle includes all functions of the OCD1.

ABOV's 8-bit microcontroller maintains binary compatibility with 8051 cores; however, the cores and series have differences in performances, core functionalities, and debug interfaces.

You can see the differences between each series in the following sections.

20.2.2 OCD type of 94/96/97 series core

Cores of the 96-series use the OCD 1 for debug interfaces, while cores of the 94-series and 97-series use the OCD 2 for debug interfaces. The OCD 1 and OCD 2 use the same method on the Hardware, however, the protocols are incompatible with each other.

In the OCD 2, it is able to measure the emulation time through the "Run Flag" pin.

Table	52.	OCD	Type	of	Each	Series
Tuble	UL .	000	1900	U 1	Luon	001100

	96-Series	97-Series	94-Series	Remark
OCD type	OCD 1	OCD 2	OCD 2	

In Table 53, debug interfaces of the OCD 1 and OCD 2 are compared.

	Value	Description
OCD 1	Break point MAX.8	PC break only
OCD 2	Break point MAX.12	With RAM break
		 Code, XDATA, IDATA
		— 1/8/16/32bit compare
	Real-time monitoring	Code, XDATA, IDATA
	Frequency output	Examine CPU frequency
	Run Flag port	Option for run time measurement

Table 53. Comparison of OCD 1 and OCD 2

96 Series – OCD 1

The 96 series supports basic operation of debug interfaces such as Run, Stop, Step, Break point, register reading/ writing, Memory reading/ writing, and SFR reading/ writing.

94 Series and 97 Series – OCD 2

The 94 series and 97 series support the features listed below, as well as the features of the OCD 1 (however, their protocol is incompatible with the OCD1):

- RTM support: CODE, XDATA, IDATA are updated during the Run Time (Real Time Monitoring available).
- Run Flag support: Emulation Time can be measured in OCD mode (using the Run Flag port).
- RAM Break support: IDATA, SFR, and XDATA break are added.

20.2.3 Interrupt priority of 94/96/97 series core

In the M8051, users can set interrupt priorities by group. The 96-series microcontroller with the basic M8051 core only supports interrupt priorities in group units. In the 94-series or 97-series microcontroller, users set interrupt priorities to have more functionalities than existing features, and can set individual priority for each interrupt source.

		•		•
Series	96-Series	97-Series	94-Series	Remark
Interrupt	6 Grouped	Fully 4 Level	Fully 4 Level	96 Series:
Priority	4 Level			IP/IP (Interrupt Priority Register)
				94, 97 Series:
				IPxL/IPxH (Interrupt Priority Register)

Table 54. Interrupt Priorities in Groups and Levels

96 Series

- The priority by group is available only with IP/IP1 settings.
 - With the IP/IP1 settings, users can set the interrupt priorities in group units.
 - The interrupt priority in group units (4 interrupts in a group) can be changed to the level between 0 and 3 according to the value of the IP/IP1.

94, 97 Series

- The individual interrupt priority can be set by setting IPxL/IPxH (x = 0 to x = 3).
- The individual interrupt priority can be changed to the level between 0 and 3 according to value of the IPxL/IPxH (x = 0 to x = 3).

20.2.4 Extended stack pointer of 94/96/97 series core

The M8051 uses IRAM area for Stack Pointer. However, 94-series and 97-series microcontrollers use both IRAM area and XRAM area for the Stack Pointer by configuring additional registers.

The XSP and XSPCR registers are involved in this functionality as described below:

- By configuring the XSP/XSPCR register, you can use the XRAM area for the Stack Pointer.
 - The XSPCR decides whether to use XRAM for the Stack Pointer.
 - If XSPCR = '0', the IRAM is available for the Stack Pointer.
 - If XSPCR = '1', the XRAM is available for the Stack Pointer.
 - The XSP decides a position of XRAM Stack Pointer.

Figure 135. Configuration of Extended Stack Pointer

STACK_POINTER = {XSP[7:0], SP[7:0]} = XRAM_TOP - STACK_SIZE

Ex) If only 256bytes of XRAM is used for stack,

- XRAM_TOP = 4K(0x0FFF)
- STACK_SIZE = 256byte(0x0100)
- XSPCR = 1, XSP = 0x0E
- SP = 0xFF setting
- Stack Pointer Position = 0x0FFF 0x0100 = 0x0EFF

20.3 OCD (On-chip debugger) emulator and debugger

Microcontrollers with 8051 cores have an OCD (On-Chip Debugger), a debug emulation block. The OCD is connected to a target microcontroller using two lines such as DSCL and DSDA. The DSCL is used for clock signal and the DSDA is used for bi-directional data.

The two lines work for the core management and control by doing register management and execution, step execution, break point and watch functions. In addition, they control and monitor the internal memory and the device by reading and writing.

Series name	96-series	97-series	94-series
OCD function	OCD 1	OCD 2	OCD 2
Max. number of breakpoints	8	8	4
Saving stack in XRAM	No	Yes	Yes
Real time monitoring	No	Yes	Yes
Run flag support	No	Yes	Yes

Table	55	Debug	Feature	hv	Series
Table	55.	Debug	i cature	IJУ	001103

The OCD 2 applied to the 94-series and 97-series provides the RTM (Real Time Monitoring) function that monitors internal memory and I/O status without stopping the debugging. In addition, the OCD 2 provides the breakpoint function (RAM Break Function) for the IDATA, SFR, and XDATA.

The following functions have been extended from the OCD 2:

- Emulation Time can be measured in OCD mode (using the Run Flag port).
- CODE, XDATA, and IDATA are updated during the Run Time (Real Time Monitoring available).
- IDATA, SFR, and XDATA break are added (RAM Break support).

Figure 136 shows the standard 10-pin connector of the OCD 1 and OCD 2.

Table 56 describes the pins assigned to the OCD 1 and OCD 2.

Pin name	Microco	ntroller function in Debug Mode			
	I/O	Description			
DSCL	I	Serial clock pin. Input only pin.			
DSDA	I/O	Serial data pin.			
		• Output port when reading and input port when programming.			
		 It can be assigned as input/push-pull output port. 			
VDD,VSS	—	Logic power supply pin.			

Table 56. OCD 1 and OCD 2 Pin Description

The OCD emulator supports ABOV's 8051 series MCU emulation. The OCD uses two wires that are interfaces between PC and MCU, which is attached to user's system. The OCD can read or change the value of MCU's internal memory and I/O peripherals. In addition, the OCD controls MCU's internal debugging logic. This means that the OCD controls emulation, step run, monitoring and many more functions regarding debugging.

The OCD debugger program runs underneath MS operating system such as MS-Windows NT/ 2000/ XP/ Vista (32-bit). If you want to see more details, please visit ABOV's website (<u>www.abovsemi.com</u>), and download debugger S/W and OCD debugger manuals.

- Connection:
 - DSCL (A96G140/A96G148/A96A148 P01 port)
 - DSDA (A96G140/A96G148/A96A148 P00 port)

Figure 137 shows pinouts of OCD connector.

Figure 137. Debugger (OCD1/OCD2) and Pinouts

20.3.1 On-chip debug system

The A96G140/A96G148/A96A148 supports On-chip Debug (OCD) system. We recommend developing and debugging program with A96G1xx series. The OCD system of the A96G140/A96G148/A96A148 can be used for programming the non-volatile memories and on-chip debugging.

In this section, you can find detailed descriptions for programming via the OCD interface. Table 57 introduces features of the OCD.

Table 57: OCD Features			
Two wire external interface	1 for serial clock input		
	 1 for bi-directional serial data bus 		
Debugger accesses	All internal peripherals		
	Internal data RAM		
	Program Counter		
	 Flash memory and data EEPROM memory 		
Extensive On-Chip Debugging	Break instruction		
supports for Break Conditions	Single step break		
	Program memory break points on single address		
	Programming of Flash, EEPROM, Fuses, and Lock		
	bits through the two-wire interface		
	On-Chip Debugging supported by Dr. Choice®		
Operating frequency	The maximum frequency of a target MCU.		

Table 57 OCD Features

Figure 138 shows a block diagram of the OCD interface and On-chip Debug system.

Figure 138. On-Chip Debugging System Block Diagram

Entering debug mode

While communicating through the OCD, you can enter the microcontroller into DEBUG mode by applying power to it. This means that the microcontroller enters DEBUG mode when you place specific signals to the DSCL and DSDA at the moment of initialization when the microcontroller is powered on. This requires that you can control power of the microcontroller (VCC or VDD) and need to be careful to place capacitive loads such as large capacity condensers on a power pin.

Please remember that the microcontroller can enter DEBUG mode only when power is applied, and it cannot enter DEBUG mode once the OCD is run.

Figure 139. Timing Diagram of Debug Mode Entry

20.3.2 Two-wire communication protocol

For the OCD interface, the semi-duplex communication protocol is used through separate two wires, the DSCL and DSDA. The DSCL is used for serial clock signal and the DSDA is used for bi-directional serial address and data.

A unit packet of transmission data is 10-bit long and consists of a byte of data, 1-bit of parity, and 1-bit of acknowledge. A parity check bit and a receive acknowledge bit are transmitted to guarantee stability of the data communication. A communication packet includes a start bit and an end bit to indicate the start and end of the communication.

More detailed information of this communication protocol is listed below:

Basic transmission packet

- A 10-bit packet transmission using two-pin interface.
- A packet consists of 8-bit data, 1-bit parity and 1-bit acknowledge.
- Parity is even of '1' for 8-bit data in transmitter.
- Receiver generates acknowledge bit as '0' when transmission for 8-bit data and its parity has no error.
- When transmitter has no acknowledge (Acknowledge bit is '1' at tenth clock), error process is executed in transmitter.
- When acknowledge error is generated, host PC makes stop condition and transmits a command which has error again.
- Background debugger command is composed of a bundle of packet.
- Start and stop conditions notify start and stop of the background debugger command respectively.

Figure 140. 10-bit Transmission Packet

Packet transmission timing

Figure 141 shows a timing diagram of a packet transmission using the OCD communication protocol.

A start bit in the figure means start of a packet and is valid when the DSDA falls from 'H' to 'L' while External Host maintains the DSCL to 'H'. After the valid start bit, communication data is transferred and received between a Host and a microcontroller.

An end bit means end of the data transmission and is valid when the DSDA changes from 'L' to 'H' while a Debugger maintains the DSCL to 'H'. Next, the microcontroller places the bus in a wait state and processes the received data.

Figure 141. Data Transfer on OCD

Figure 142 shows a timing diagram of each bit based on state of the DSCL clock and the DSDA data. Similar to I2C signal, the DSDA data is allowed to change when the DSCL is 'L'. If the data changes when the DSCL is 'H', the change means 'START' or 'STOP'.

Figure 142. Bit Transfer on Serial Bus

Figure 143. Start and Stop Conditions

During the OCD communication, each data byte is transferred in accompany with a parity bit. When data is transferred in succession, a receiver returns the acknowledge bit to inform that it received.

As shown in Figure 144, when transferring data, a receiver outputs the DSDA to 'L' to inform the normal reception of data. If a receiver outputs DSDA to 'H', it means error reception of data.

Figure 144. Acknowledge on Serial Bus

While the Host Debugger executes data communications, if a microcontroller needs communication delay or process delay, it can request communication delay to the Host Debugger.

Figure 145 shows timing diagrams where a microcontroller requests communication delay to the Host Debugger. If the microcontroller requests timing delay of the DSCL signal that the Host Debugger outputs, the microcontroller maintains the DSCL signal to 'L' to delay the clock change although the Host Debugger changes the DSCL to 'H'.

Figure 145. Clock Synchronization during Wait Procedure

20.4 Programmers

20.4.1 E-PGM+

E-PGM+ USB is a single programmer. You can program A96G140/A96G148/A96A148 directly using the E-PGM+.

Figure 146. E-PGM+ (Single Writer) and Pinouts

20.4.2 OCD emulator

OCD emulator allows users to write code on the device too, since OCD debugger supports In System Programming (ISP). It doesn't require additional H/W, except developer's target system.

20.4.3 Gang programmer

E-Gang4 and E-Gang6 allow users to program multiple devices simultaneously. They can be run not only in PC controlled mode but also in standalone mode without the PC control.

USB interface is available, and it is easy to connect to the handler.

Figure 147. E-Gang4 and E-Gang6 (for Mass Production)

20.5 Flash programming

Program memory for A96G140/A96G148/A96A148 is Flash type. This Flash ROM is accessed through four pins such as DSCL, DSDA, VDD and VSS in serial data format. For detailed information about the Flash memory programming, please refer to **19. Memory programming**

Table 58 introduces corresponding pins and I/O status.

Pin name	Main chip	During programming		
	pin name	I/O	Description	
DSCL	P01	l	Serial clock pin. Input only pin.	
DSDA	P00	I/O	Serial data pin. Output port when reading and input port when programming. Can be assigned as input/push-pull output port.	
VDD, VSS	VDD, VSS	—	Logic power supply pin.	

 Table 58. Pins for Flash Programming

20.5.1 On-board programming

Microcontrollers need only four signal lines including VDD and VSS pins, to program the Flash ROM using serial protocol. Therefore, on-board programming is possible if the programming signal lines are considered at the time the PCB of application board is designed.

20.6 Connection of transmission

OCD's two-wire communication interfaces use the Open-Drain Method (Wire-AND Bi-Directional I/O).

Normally, it is recommended to place a resister greater than $4.7k\Omega$ for the DSCL and DSDA respectively. The capacitive load is recommended to be less than 100pF. Outside these ranges, because the communication may not be accomplished, the connection to Debug mode is not guaranteed.

Figure 148. Connection of Transmission

20.7 Circuit design guide

To program Flash memory, programming tools require 4 signal lines, DSCL, DSDA, VDD, and VSS. When designing a PCB circuit, you should consider these 4 signal lines for on-board programming. In addition, you need to be careful when designing the related circuit of these signal pins, because rising/falling timing of the DSCL and DSDA is very important for proper programming.

When you use the OCD pins exclusively or share them with other functions, it needs to be careful, too. Figure 149 shows an example circuit where the OCD pins (DSCL and DSDA) are shared with other functions. They must be connected when debugging or executing In System Program (ISP).

Normally, the OCD pins are connected to outside to execute the predefined functions. Even when they are connected for debugging or executing ISP directly, the OCD pins are shared with other functions by using resistors as shown in Figure 149. By doing this, the OCD pins process the normal external signals and execute the OCD functions first when they are shared.

2. The value of R1 and R2 is recommended value. It varies with circuit of system.

Figure 149. PCB Design Guide for On-Board Programming

Appendix

Instruction table

Instructions are either1, 2 or 3bytes long as listed in the 'Bytes' column below. Each instruction takes either 1, 2 or 4 machine cycles to execute as listed in the following table. 1 machine cycle comprises 2 system clock cycles.

ARITHMETIC						
Mnemonic	Description	Bytes	Cycles	Hex code		
ADD A,Rn	Add register to A	1	1	28-2F		
ADD A,dir	Add direct byte to A	2	1	25		
ADD A,@Ri	Add indirect memory to A	1	1	26-27		
ADD A,#data	Add immediate to A	2	1	24		
ADDC A,Rn	Add register to A with carry	1	1	38-3F		
ADDC A,dir	Add direct byte to A with carry	2	1	35		
ADDC A,@Ri	Add indirect memory to A with carry	1	1	36-37		
ADDC A,#data	Add immediate to A with carry	2	1	34		
SUBB A,Rn	Subtract register from A with borrow	1	98-9F			
SUBB A,dir	Subtract direct byte from A with borrow	1	95			
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	96-97			
SUBB A,#data	Subtract immediate from A with borrow	1	94			
INC A	Increment A	1	1	04		
INC Rn	Increment register	1	1	08-0F		
INC dir	Increment direct byte	2	1	05		
INC @Ri	Increment indirect memory	1	1	06-07		
DEC A	Decrement A	1	1	14		
DEC Rn	Decrement register	1	1	18-1F		
DEC dir	Decrement direct byte 2 1		1	15		
DEC @Ri	Decrement indirect memory 1 1			16-17		
INC DPTR	Increment data pointer 1 2 A					
MUL AB	Multiply A by B	1	4	A4		
DIV AB	Divide A by B	1	4	84		
DAA	Decimal Adjust A 1 D4					

Table 59. Instruction Table

LOGICAL					
Mnemonic	Description	Bytes	Cycles	Hex code	
ANL A,Rn	AND register to A	58-5F			
ANL A,dir	AND direct byte to A	2	1	55	
ANL A,@Ri	AND indirect memory to A	1	1	56-57	
ANL A,#data	AND immediate to A	2	1	54	
ANL dir,A	AND A to direct byte	2	1	52	
ANL dir,#data	AND immediate to direct byte	3	2	53	
ORL A, Rn	OR register to A	1	1	48-4F	
ORL A,dir	OR direct byte to A 2 1				
ORLA,@Ri	Ri OR indirect memory to A 1 1				
ORL A,#data	OR immediate to A	mediate to A 2 1		44	
ORL dir,A	OR A to direct byte	2 1		42	
ORL dir,#data	OR immediate to direct byte	te to direct byte 3 2		43	
XRL A, Rn	Exclusive-OR register to A 1 1		1	68-6F	
XRL A,dir	Exclusive-OR direct byte to A 2 1		1	65	
XRLA, @Ri	Exclusive-OR indirect memory to A 1 1		66-67		
XRL A,#data	a Exclusive-OR immediate to A 2 1		64		
XRL dir,A	Exclusive-OR A to direct byte	2	1	62	
XRL dir,#data	Exclusive-OR immediate to direct byte	3	2	63	
CLR A	Clear A	1	1	E4	
CPLA	Complement A	1	1	F4	
SWAP A	Swap Nibbles of A 1 1 C		C4		
RLA	Rotate A left 1 1 2		23		
RLC A	Rotate A left through carry	1	1	33	
RR A	Rotate A right	1	1	03	
RRC A	Rotate A right through carry 1 1 13				

DATA TRANSFER				
Mnemonic	Description	Bytes	Cycles	Hex code
MOV A,Rn	Move register to A	1	1	E8-EF
MOV A,dir	Move direct byte to A	2	1	E5
MOV A,@Ri	Move indirect memory to A	1	1	E6-E7
MOV A,#data	Move immediate to A	2	1	74
MOV Rn,A	Move A to register	1	1	F8-FF
MOV Rn,dir	Move direct byte to register	2	2	A8-AF
MOV Rn,#data	Move immediate to register	2	1	78-7F
MOV dir,A	Move A to direct byte	2	1	F5
MOV dir,Rn	Move register to direct byte	2	2	88-8F
MOV dir,dir	Move direct byte to direct byte	3	2	85
MOV dir,@Ri	Move indirect memory to direct byte	2	2	86-87
MOV dir,#data	Move immediate to direct byte	3	2	75
MOV @Ri,A	Move A to indirect memory	1	1	F6-F7
MOV @Ri,dir	Move direct byte to indirect memory	2	2	A6-A7
MOV @Ri,#data	Move immediate to indirect memory	2	1	76-77
MOV DPTR,#data	Move immediate to data pointer	3	2	90
MOVC	Move code byte relative DPTR to A	1	2	93
A,@A+DPTR				
MOVC A,@A+PC	Move code byte relative PC to A	1	2	83
MOVX A,@Ri	Move external data(A8) to A	1	2	E2-E3
MOVX A,@DPTR	Move external data(A16) to A	1	2	E0
MOVX @Ri,A	Move A to external data(A8)	1	2	F2-F3
MOVX @DPTR,A	Move A to external data(A16)	1	2	F0
PUSH dir	Push direct byte onto stack	2	2	C0
POP dir	Pop direct byte from stack	2	2	D0
XCH A,Rn	Exchange A and register	1	1	C8-CF
XCH A,dir	Exchange A and direct byte	2	1	C5
XCH A,@Ri	Exchange A and indirect memory	1	1	C6-C7
XCHD A,@Ri	Exchange A and indirect memory nibble	1	1	D6-D7

Table 59.	Instruction	Table ((continued)
10010 001			

BOOLEAN				
Mnemonic	Description	Bytes	Cycles	Hex code
CLR C	Clear carry	1	1	C3
CLR bit	Clear direct bit	2	1	C2
SETB C	Set carry	1	1	D3
SETB bit	Set direct bit	2	1	D2
CPL C	Complement carry	1	1	B3
CPL bit	Complement direct bit	2	1	B2
ANL C,bit	AND direct bit to carry	2	2	82
ANL C,/bit	AND direct bit inverse to carry	2	2	B0
ORL C,bit	OR direct bit to carry	2	2	72
ORL C,/bit	OR direct bit inverse to carry	2	2	A0
MOV C,bit	Move direct bit to carry	2	1	A2
MOV bit,C	Move carry to direct bit	2	2	92

BRANCHING				
Mnemonic	Description	Bytes	Cycles	Hex code
ACALL addr 11	Absolute jump to subroutine	2	2	11→F1
LCALL addr 16	Long jump to subroutine	3	2	12
RET	Return from subroutine	1	2	22
RETI	Return from interrupt	1	2	32
AJMP addr 11	Absolute jump unconditional	2	2	01→E1
LJMP addr 16	Long jump unconditional	3	2	02
SJMP rel	Short jump (relative address)	2	2	80
JC rel	Jump on carry = 1	2	2	40
JNC rel	Jump on carry = 0	2	2	50
JB bit,rel	Jump on direct bit = 1	3	2	20
JNB bit,rel	Jump on direct bit = 0	3	2	30
JBC bit,rel	Jump on direct bit = 1 and clear	3	2	10
JMP @A+DPTR	Jump indirect relative DPTR 1		2	73
JZ rel	Jump on accumulator = 0	2	2	60
JNZ rel	Jump on accumulator ≠0	2	2	70
CJNE A,dir,rel	Compare A, direct jne relative	3	2	B5
CJNE A,#d,rel	Compare A, immediate jne relative	3	2	B4
CJNE Rn,#d,rel	Compare register, immediate jne relative	3	2	B8-BF
CJNE @Ri,#d,rel	Compare indirect, immediate jne relative	3	2	B6-B7
DJNZ Rn,rel	Decrement register, jnz relative	2	2	D8-DF
DJNZ dir,rel	Decrement direct byte, jnz relative	3	2	D5

MISCELLANEOUS				
Mnemonic	Description	Bytes	Cycles	Hex code
NOP	No operation	1	1	00
ADDITIONAL INSTRUCTIONS (selected through EO[7:4])				
Mnemonic	Description	Bytes	Cycles	Hex code
MOVC @(DPTR++),A	M8051W/M8051EW-specific instruction supporting	1	2	A5
	software download into program memory			
TRAP	Software break command	1	1	A5

In the above table, entries such as E8-EF indicate continuous blocks of hex opcodes used for 8 different registers. Register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as '11 \rightarrow F1' (for example), are used for absolute jumps and calls, with the top 3 bits of the code being used to store the top three bits of the destination address.

CJNE instructions use abbreviation of #d for immediate data; other instructions use #data as an abbreviation.

Revision history

Date	Revision	Description
2019.08.05	1.00	First creation
2019.10.02	1.10	Added Receive Time Out (RTO) and 0% Error Baud Rate features of USART on page 15.
		Corrected the device name from A96G140/A96G148KL to A96G140/A96G148KN on page 19.
		Corrected the internal frequency from 16MHz to 32MHz in 7.6 High Internal RC Oscillator Characteristics on page 246.
		Added additional description of UCTRL4 on page229.
2019.10.14	1.11	Deleted Special Test Mark (V, High voltage stressed) on page 284 Changed the minimum voltage of crystal OSC from 2.0V to 2.2V on page 15, 244 and 255.
		Added the contents of A96G148 with 32 Kbytes of FLASH.
2019.10.16	1.12	Fixed the maximum specification of OSC feedback resistor in 19.8 DC Characteristics on page 247.
2019.12.02	1.13	Modified the temperature specification to 85°C in 7.6 High Internal RC Oscillator Characteristics on page 246.
		Updated 19.4 Power-on Reset Characteristics on page 245
		Updated 19.5 Low Voltage Reset and Low Voltage Indicator Characteristics on page 245
2020.02.04	1.14	Added the disclaimer and modified the distributor.
2020.02.06	1.15	Revised A96G14x to A96G140/A96G148
2020.02.18	1.16	Added to A96A148 device
2020.02.21	1.17	Corrected typographical errors
2020.03.13	1.18	Corrected typographical errors & Revise "Ordering information"
2020.04.02	1.19	Revised "Ordering information"
2020.05.22	1.20	Revised "Low voltage reset and low voltage indicator characteristics"
2020.06.08	1.21	Corrected the I/O symbol of LED0 ~ LED7 to O at Table 2. Normal Pin Description.
		Updated Basic Interval Timer Block Diagram at Figure 29.
		Updated Watchdog Timer Block Diagram at Figure 31.
		Added the description of V_{LVD}/V_{LVI} at Table 49. LVR and LVI Characteristics.
		Extended maximum operating temperature up to 105°C as well as 85°C.
2020.07.20	1.22	Corrected the conditions of Supply Current
		Updated the table and figures for USART characteristics in 19 Electrical characteristics.
		Corrected the minimum A/D Conversion time to 7.5us
2020.08.31	1.23	Advanced Flash Endurance times from 10,000 to 30,000.
2020.09.28	1.24	Updated the initial value in Table 5. SFR Map.
		Updated a typo in Figure 118. Fast VDD Rising Time and Figure 119. Internal RESET Release Timing On Power-Up.

Date	Revision	Description		
2021.01.26	1.25	Added the temperature condition of "-10°C to 70°C" at Table 23. High		
		Speed Internal RC Oscillator Characteristics		
		Corrected the configuration read timing at Figure 120. Configuration		
		Timing when Power-on		
2021.02.03	1.26	Corrected the configuration timing diagram at Figure 120. Configuration		
		Timing when Power-on and Figure 126. Configuration Timing When LVR		
		RESEI.		
2021.03.05	1.27	Added 48 QFN package at 22 Package information and 23 Ordering		
0004 00 44	4.00			
2021.03.11	1.28	Changed the value of total power dissipation(P_T) from 600 mW to 800 mW in Abachuta Maximum Datinga		
		Deleted the table of Input/Output Conscitance in Electrical		
		Characteristics		
2021 04 22	1.20	Changed the figures of Backage Outline Drawing in 21 Backage		
2021.04.23	1.29	information chapter		
		Updated High Speed Internal RC Oscillator Tolerance at Table 54. High		
		Speed Internal RC Oscillator Characteristics.		
		Corrected the frequency unit from KHz to kHz.		
2021.04.27	1.30	Added 4. Central Processing Unit chapter.		
		Updated 20 Development tools chapter.		
		Removed Electrical characteristics, Package information, Ordering		
		information.		
		Changed 48 QFN package information in Package information chapter.		
2022.11.21	1.31	Updated font style of this document.		
2023.04.05	1.32	Fixed RESETB Input low width 10us->50us in 18.3 External RESETB		
		description.		
		ADD Figure 3. 48QFN Pin Assignment.		
2024.06.03	1.33	Added 44 LQFP packages.		
		Added High current port descriptions.		

Korea

Regional Office, Seoul R&D, Marketing & Sales 8th Fl., 330, Yeongdong-daero, Gangnam-gu, Seoul, 06177, Korea

Tel: +82-2-2193-2200 Fax: +82-2-508-6903 http://www.abovsemi.com/

Domestic Sales Manager Tel: +82-2-2193-2206 Fax: +82-2-508-6903 Email: <u>sales kr@abov.co.kr</u> HQ, Ochang R&D, QA, and Test Center 37, Gangni 1-gil, Ochang-eup, Cheongwon-gun, Chungcheongbuk-do, 28126, Korea Tel: +82-43-219-5200 Fax: +82-43-217-3534 http://www.abovsemi.com/

Global Sales Manager Tel: +82-2-2193-2281 Fax: +82-2-508-6903 Email: <u>sales gl@abov.co.kr</u> **China Sales Manager** Tel: +86-755-8287-2205 Fax: +86-755-8287-2204 Email: <u>sales cn@abov.co.kr</u>

ABOV Disclaimer IMPORTANT NOTICE – PLEASE READ CAREFULLY

ABOV Semiconductor ("ABOV") reserves the right to make changes, corrections, enhancements, modifications, and improvements to ABOV products and/or to this document at any time without notice. ABOV does not give warranties as to the accuracy or completeness of the information included herein. Purchasers should obtain the latest relevant information of ABOV products before placing orders. Purchasers are entirely responsible for the choice, selection, and use of ABOV products and ABOV assumes no liability for application assistance or the design of purchasers' products. No license, express or implied, to any intellectual property rights is granted by ABOV herein. ABOV disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of ABOV products in such unauthorized applications. ABOV and the ABOV logo are trademarks of ABOV. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces the information previously supplied in any former versions of this document.

© 2019-2024 ABOV Semiconductor – All rights reserved

