December 3, 2015 Ver 0.6

**4-BIT SINGLE CHIP MICROCOMPUTERS** 

# ADAM43P1108 USER`S MANUAL



# 0. Revision History

| Version | Date       | Description                                                                                                                                                |
|---------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VER 0.0 | 2008.11.25 | 1'st Release.                                                                                                                                              |
| VER 0.1 | 2009.6.23  | remove "T1" of the Timer-0 Source clock.                                                                                                                   |
| VER 0.2 | 2009.7.09  | added the section of MTP Programming and Instruction Set.                                                                                                  |
| VER 0.3 | 2010.9.28  | added the description of PS0~PS11 for Timer Clock Source.<br>changed the specification of sleep mode current.                                              |
| VER 0.4 | 2010.12.14 | correct the error in page 73. (14.2. Configuration Option Bit Description) added the characteristic graph and specification of the Internal RC Oscillator. |
| VER 0.5 | 2013.4.4   | correct the error in page 30, 57, 58.                                                                                                                      |
| VER 0.6 | 2015.12.3  | Add the chapter `1.7.3 POR Electrical Characteristics'. (12 page)<br>Add the electrical specification of LVD & Temperature characteristics. (13, 15 page)  |
|         |            |                                                                                                                                                            |
|         |            |                                                                                                                                                            |
|         |            |                                                                                                                                                            |
|         |            |                                                                                                                                                            |

The ADAM43P1108 is the High Speed and Low Voltage operating 4-bit single chip microcomputer. This chip contains ADAM43 CPU, EPROM, RAM, Timer/PWM, Interrupt, Watch Dog Timer, 12-bit ADC, Input/Output Ports and Oscillation Circuit.

## 1.1. Features

- Instruction Execution Time
  - 500ns @ fosc=8MHz
- Program Memory Area (MTP)
  - 4K Bytes (2,048 x 16bit)
    - Multi-programmable by 2K Bytes(1,024 x 16bit)
- Data memory (RAM)
  - 128 nibble (128 x 4bit)
- 16-Bit Table read Instruction.
- A/D Converter
  - 12Bit x 5ch
- Timer (Timer/Counter/Capture/PWM)
  - 12Bit x 1ch [PWM0 : (8+4)bit x 1ch]
  - 8Bit x 1ch [PWM1 : (6+2)bit x 1ch]
- Watch-Dog Timer (with RCWDT=64kHz)
  - 19Bit x 1ch
- Oscillator Type
  - Calibrated Internal RCOSC : typ. 16/8/4/1MHz(±2%) selectable
  - External R-OSC : 400k~16MHz
  - External Clock Input : 400k ~ 16MHz
  - Crystal/Resonator : 400k ~ 16MHz, 32.768kHz
  - Power On Reset
- Power Saving Operation Modes
  - STOP
  - SLEEP
  - RCWDT
- Interrupt Sources
  - External : 3ch (KSCN, INT0, INT1)
  - Internal : 5ch (T0, T1, ADC, WDT, VDI)
  - Low Voltage Detection Reset Circuit
- ◆ 3-level Voltage Detection Indicator (4.0V/3.0V/2.5V)
- Operating Voltage Range
  - 2.0 ~ 5.5 V @ 30kHz ~ 4MHz
    - 2.7 ~ 5.5 V @ 4MHz ~ 16MHz
- Operating Temperature Range
  - -40 ~ 85 °C
- ☑ ADAM43P1108 Device Summary

| Series         | ADAM43P1108     |
|----------------|-----------------|
| Program memory | 2,048 x 16      |
| Data memory    | 128 x 4         |
| I/O ports      | 6               |
| Package        | 8-SOP/DIP/TSSOP |



## 1.4. Package Dimension



8 SOP (150Mil) Pin Dimension (dimensions in millimeters)



8 DIP (300Mil) Pin Dimension (dimensions in millimeters)



8 TSSOP (4.4 mm) Pin Dimension (dimensions in inch [millimeters])

## 1.5. Pin Function

## 1.5.1. Port Pins

| Pin<br>Name | I/O | Function                                                                                                                                                                   | @RESET                        | @STOP                      | Shared<br>Pins               |
|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|------------------------------|
| PA0         |     | - 3-bit I/O Port.<br>- CMOS input.                                                                                                                                         |                               |                            | TMA/INT0(EC0)<br>/AN0/KSA0   |
| PA1         | I/O | <ul> <li>Push-pull output.</li> <li>Each pin can be set and reset by Data register value.</li> <li>Can be programmable as Pull-up/N-ch open drain/</li> </ul>              | Input<br>(without<br>Pull-up) | State<br>of before<br>STOP | VREF/INT1(EC1)<br>/AN1/KSA1  |
| PA2         |     | KSCN/AN/INT(EC)/TIMER output/VREF individually.<br>- Direct driving of LED (N-TR).                                                                                         |                               |                            | PWM0/*INT0(EC0)<br>/AN2/KSA2 |
| PB1         |     | - 3-bit I/O Port.<br>- CMOS input.<br>- Push-pull output (except PB1).                                                                                                     |                               |                            | RESETB/PWM0<br>/KSB1         |
| PB2         | I/O | - Each pin can be set and reset by Data register value.<br>- Can be programmable as Pull-up/N-ch open drain<br>/KSCN/AN/TIMER output individually.                         | Input<br>(without<br>Pull-up) | State<br>of before<br>STOP | OSC2/PWM1<br>/AN6/KSB2       |
| PB3         |     | <ul> <li>Direct driving of LED (N-TR).</li> <li>PB1 is N-ch Open drain output only at output mode.</li> <li>PB2 and PB3 can be selected Pull-down individually.</li> </ul> |                               |                            | OSC1/TMB<br>/AN7/KSB3        |

## 1.5.2. Non-port Pins

| Pin<br>Name | I/O | Function                                                                                                                 | @RESET              | Shared<br>Pins |
|-------------|-----|--------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| INTO        |     | - External Interrupt input for which the valid                                                                           |                     | PA0            |
| INTO        | I   | edges (rising edge, falling edge , both rising<br>and falling edge) can be specified.                                    | Input (Pull-up off) | PA2            |
| INT1        |     | - Timer0, Timer1 capture input.                                                                                          |                     | PA1            |
| EC0         |     |                                                                                                                          |                     | PA0            |
| ECU         | Ι   | - Timer0, Timer1 event counter input.                                                                                    | Input (Pull-up off) | PA2            |
| EC1         |     |                                                                                                                          |                     | PA1            |
| PWM0        | 0   | 12 hit DWM (charad with Timor() output                                                                                   | Input (Dull up off) | PA2            |
| PWMU        | 0   | - 12-bit PWM (shared with Timer0) output.                                                                                | Input (Pull-up off) | PB1            |
| PWM1        | 0   | - 8-bit PWM (shared with Timer1) output.                                                                                 | Input (Pull-up off) | PB2/OSC2       |
| TMA         | 0   | - Timer0, Timer1 logic output.                                                                                           | Input (Dull up off) | PA0            |
| ТМВ         |     |                                                                                                                          |                     | PB3/OSC1       |
| KSA0 ~ KSA2 | т   | <ul> <li>Key Scan Interrupt input and STOP mode release<br/>input which the valid edges (rising edge, falling</li> </ul> | Innut (Dull un off) | PA0 ~ PA2      |
| KSB1 ~ KSB3 | I   | edge, both rising and the falling edge) can be specified.                                                                | Input (Pull-up oπ)  | PB1 ~ PB3      |
| AN0 ~ AN2   | I   | <ul> <li>Analog input for A/D Converter.</li> <li>Each port's pull-up resistor is disabled</li> </ul>                    | Input (Pull-up off) | PA0 ~ PA2      |
| AN6 ~ AN7   | 1   | at A/D input mode.                                                                                                       |                     | PB2 ~ PB3      |
| VREF        | Р   | - Analog power for A/D converter.                                                                                        | Input (Pull-up off) | PA1            |
| OSC1        | I   | - Oscillator input.                                                                                                      | Input (Pull-up off) | PB3            |
| OSC2        | 0   | - Oscillator output.                                                                                                     | Input (Pull-up off) | PB2            |
| RESETB      | Ι   | - External RESETB Input by Code/Register Option.                                                                         | Input (Pull-up off) | PB1            |
| VDD         | Р   | - Positive power supply.                                                                                                 | -                   | -              |
| GND         | Р   | - Ground.                                                                                                                | -                   | -              |

# 1.5.3. OTP Programming Pin Description (OTP Program Mode)

| Pin Name | I/O                      | Function                                                  | Shared Pins                                                                                                                                                                                         |
|----------|--------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VDD      | Р                        | - Programming Power supply (+ 5.0V)                       | VDD                                                                                                                                                                                                 |
| VPP      | Р                        | - Programming high voltage Power supply (+11.5V)          | PB1/PWM0/RESETB                                                                                                                                                                                     |
| GND      | Р                        | - Ground                                                  | GND                                                                                                                                                                                                 |
| SCK      | Ι                        | - Programming Clock input pin                             | PA2/AN2/*INT0(EC0)/PWM0                                                                                                                                                                             |
| SDA      | I/O                      | - Programming Data Input/Output pin                       | PA0/AN0/INT0(EC0)/TMA                                                                                                                                                                               |
|          | VDD<br>VPP<br>GND<br>SCK | VDD     P       VPP     P       GND     P       SCK     I | VDD     P     Programming Power supply (+ 5.0V)       VPP     P     - Programming high voltage Power supply (+11.5V)       GND     P     - Ground       SCK     I     - Programming Clock input pin |

## 1.6. Port Structure



\*\* : It is depend on user definition.

## 1.6. Port Structure



\* : It is depend on user definition.

## 1.6. Port Structure



\* : It is depend on user definition.

## 1.6. Port Structure



ADAM43P1108 User's Manual (V0.6-2015.12)

1.6. Port Structure (OSC1/OSC2 mode)



## 1.7. Electrical Characteristics

| 1.7.1. Absolute Maxim | num Ratings (Ta = 25°C) |
|-----------------------|-------------------------|
|-----------------------|-------------------------|

| PARAMETER           | SYMBOL           | RATINGS          | UNIT |
|---------------------|------------------|------------------|------|
| Supply Voltage      | V <sub>DD</sub>  | -0.3 ~ +6.0      | V    |
| Input Voltage       | V <sub>I</sub>   | -0.3 ~ VDD + 0.3 | V    |
| Output Voltage      | Vo               | -0.3 ~ VDD + 0.3 | V    |
| Storage Temperature | T <sub>STG</sub> | -65 ~ 150        | °C   |
| Power Dissipation   | P <sub>D</sub>   | 700              | mW   |

## 1.7.2. Recommended Operating Ranges

| PARAMETER             | SYMBOL           | CONDITION                                                             | MIN.  | TYP.   | MAX   | UNIT |
|-----------------------|------------------|-----------------------------------------------------------------------|-------|--------|-------|------|
| Cupply Voltage        | M                | $f_{OSC} = 4MHz$                                                      | 2.0   | -      | 5.5   | V    |
| Supply Voltage        | $V_{DD}$         | $f_{OSC} = 16MHz$                                                     | 2.7   |        | V     |      |
|                       |                  | Crystal/Ceramic Resonator<br>External Clock<br>External RC Oscillator |       | 4      | 16    | MHz  |
|                       |                  | Crystal Resonator                                                     | -     | 32.768 | -     | kHz  |
|                       |                  | Calibrated<br>Internal RC Oscillator<br>(Ta=-20 ~ 70℃)                | 15.68 | 16.00  | 16.32 | MHz  |
|                       |                  |                                                                       | 7.84  | 8.00   | 8.16  |      |
|                       |                  |                                                                       | 3.92  | 4.00   | 4.08  |      |
| Oscillation Frequency | $f_{OSC}$        |                                                                       | 0.98  | 1.00   | 1.02  |      |
|                       |                  |                                                                       | (-2%) | -      | (+2%) |      |
|                       |                  |                                                                       | 15.52 | 16.00  | 16.48 |      |
|                       |                  | Calibrated                                                            | 7.76  | 8.00   | 8.24  |      |
|                       |                  | Internal RC Oscillator                                                | 3.88  | 4.00   | 4.12  |      |
|                       |                  | (Ta=-40~85℃)                                                          | 0.97  | 1.00   | 1.03  |      |
|                       |                  |                                                                       | (-3%) | -      | (+3%) |      |
| Operating Temperature | T <sub>OPR</sub> |                                                                       | -40   |        | 85    | °C   |

## 1.7.3. POR(Power on Reset) Electrical Characteristics (VDD=5.5V~2.0V, VSS=0V, Ta = -40°C~85°C)

| Devementer              | Symbol Condition |                 | S    | Unit |                           |      |
|-------------------------|------------------|-----------------|------|------|---------------------------|------|
| Parameter               | Symbol           | Condition       | MIN  | TYP  | tion<br>MAX<br>0.2<br>VSS | Unit |
| DOD Chart valtage       | Vstart*          | Tpor > 0.35V/ms | VSS  | -    | 0.2                       | V    |
| POR Start voltage       |                  | Tpor > 0.05V/ms | -    | -    | VSS                       | V    |
| VDD Voltage Rising Time | Tpor*            |                 | 0.05 | -    | -                         | V/ms |

\*) These parameters are presented for design guidance only and not tested or guaranteed.



## 1.7.4. DC Characteristics (Ta = 25℃)

|                                                                                                                                                                                                                                                                                                                                                | Symbol             |                    | Condition      |               | S                                                                                                                                                                                                                                                                                                                                  | pecificatio | on                                                                                                                                                                                                                                                                                                                         | UNIT |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                | Symbol             | Condition          |                |               | MIN.                                                                                                                                                                                                                                                                                                                               | TYP.        | MAX.                                                                                                                                                                                                                                                                                                                       |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                        | V <sub>IHX</sub>   | OSC1               |                |               | 0.9VDD                                                                                                                                                                                                                                                                                                                             |             | VDD                                                                                                                                                                                                                                                                                                                        | V    |
|                                                                                                                                                                                                                                                                                                                                                |                    | VDD                | V              |               |                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                            |      |
| input foldage                                                                                                                                                                                                                                                                                                                                  | V <sub>IH2</sub>   | PA, PB             |                |               | 0.7VDD                                                                                                                                                                                                                                                                                                                             |             | MAX.<br>VDD                                                                                                                                                                                                                                                                                                                | V    |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>ILX</sub>   | OSC1               | 0              |               | 0.1VDD                                                                                                                                                                                                                                                                                                                             | V           |                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>IL1</sub>   | RESETB, KSCN, INTO | )/EC0, INT1/E  | EC1           | 0                                                                                                                                                                                                                                                                                                                                  |             | 0.2VDD                                                                                                                                                                                                                                                                                                                     | V    |
| High level<br>input voltage<br>Low level<br>input voltage<br>High level input<br>leakage current<br>Low level input<br>leakage current<br>High level<br>output voltage<br>Low level<br>output voltage<br>High level output<br>leakage current<br>Low level output<br>leakage current<br>Input Pull-up<br>current<br>Input Pull-down<br>current | V <sub>IL2</sub>   | PA, PB             |                |               | 0                                                                                                                                                                                                                                                                                                                                  |             | 0.3VDD                                                                                                                                                                                                                                                                                                                     | V    |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>IH</sub>    | PA, PB             |                | VIH = VDD     |                                                                                                                                                                                                                                                                                                                                    |             | 1                                                                                                                                                                                                                                                                                                                          | uA   |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>IL</sub>    | PA, PB             |                | VIL = 0V      |                                                                                                                                                                                                                                                                                                                                    |             | -1                                                                                                                                                                                                                                                                                                                         | uA   |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>OH1</sub>   | , ,                | VDD = 5V       | IOH = -10mA   | VDD-1.0                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                                                                                                                                                                            | v    |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>OHX</sub>   | OSC2               | VDD = 5V       | IOH = -0.2mA  | MIN.TYP.MAX.0.9VDDVDD0.8VDDVDD0.7VDDVDD00.1VDD00.2VDD00.3VDD01.001.1VDD-1.01.0VDD-1.01.0VDD-1.01.0VDD-1.01.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.011.0 <trr>11</trr> | V           |                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>OL1</sub>   | PA, PB             | VDD = 5V       | IOL = 15mA    |                                                                                                                                                                                                                                                                                                                                    |             | 1.0                                                                                                                                                                                                                                                                                                                        | V    |
| Low level<br>output voltage<br>High level output<br>leakage current<br>Low level output<br>leakage current<br>Input Pull-up<br>current                                                                                                                                                                                                         | V <sub>OL2</sub>   |                    | VDD = 5V       | IOL = 25mA    |                                                                                                                                                                                                                                                                                                                                    |             | 1.0                                                                                                                                                                                                                                                                                                                        | v    |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>OLX</sub>   | OSC2               | VDD = 5V       | IOL = 0.2mA   |                                                                                                                                                                                                                                                                                                                                    |             | 1.0                                                                                                                                                                                                                                                                                                                        | V    |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>OHL</sub>   | PA, PB             |                | VOH = VDD     |                                                                                                                                                                                                                                                                                                                                    |             | 1                                                                                                                                                                                                                                                                                                                          | uA   |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>OLL</sub>   | PA, PB             |                | VOL = 0V      |                                                                                                                                                                                                                                                                                                                                    |             | -1                                                                                                                                                                                                                                                                                                                         | uA   |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>PU</sub>    | PA, PB             | VDD = 5V       |               | -25                                                                                                                                                                                                                                                                                                                                | -50         | -100                                                                                                                                                                                                                                                                                                                       | uA   |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>PD</sub>    | PB2, PB3           | VDD = 5V       |               | 25                                                                                                                                                                                                                                                                                                                                 | 50          | 100                                                                                                                                                                                                                                                                                                                        | uA   |
|                                                                                                                                                                                                                                                                                                                                                | T                  | Operating surrent  | VDD = 5V       | fXIN = 10MHz  |                                                                                                                                                                                                                                                                                                                                    | 2           | 2.5                                                                                                                                                                                                                                                                                                                        | mA   |
|                                                                                                                                                                                                                                                                                                                                                | 1 <sub>DD</sub>    | Operating current  | VDD = 5V       | fXIN = 4MHz   |                                                                                                                                                                                                                                                                                                                                    | 1           | TYP.MAX.VDDVDDVDD0.1VDD0.1VDD0.2VDD1.01.11.11.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.1 <td>mA</td> | mA   |
| output voltage<br>High level output<br>leakage current<br>Low level output<br>leakage current<br>Input Pull-up<br>current<br>Input Pull-down<br>current                                                                                                                                                                                        | т                  | Clean made current | VDD = 5V       | fXIN = 10MHz  |                                                                                                                                                                                                                                                                                                                                    | 1           | 2                                                                                                                                                                                                                                                                                                                          | mA   |
| supply                                                                                                                                                                                                                                                                                                                                         | <sup>1</sup> SLEEP |                    | VDD = 5V       | fXIN = 4MHz   |                                                                                                                                                                                                                                                                                                                                    | 0.6         | 1.2                                                                                                                                                                                                                                                                                                                        | mA   |
| current                                                                                                                                                                                                                                                                                                                                        |                    |                    | VDD = 5V       | RCWDT On      |                                                                                                                                                                                                                                                                                                                                    | 10          | 20                                                                                                                                                                                                                                                                                                                         | uA   |
|                                                                                                                                                                                                                                                                                                                                                | I <sub>STOP</sub>  |                    | VDD = 5V       | LVD On        |                                                                                                                                                                                                                                                                                                                                    | 2           | 5                                                                                                                                                                                                                                                                                                                          | uA   |
|                                                                                                                                                                                                                                                                                                                                                |                    |                    | VDD = 5V       | LVD Off       |                                                                                                                                                                                                                                                                                                                                    | -           | 1                                                                                                                                                                                                                                                                                                                          | uA   |
|                                                                                                                                                                                                                                                                                                                                                | F <sub>RCWDT</sub> | RCWDT              | VDD = 5V       |               | 32                                                                                                                                                                                                                                                                                                                                 | 64          | 128                                                                                                                                                                                                                                                                                                                        | KHz  |
|                                                                                                                                                                                                                                                                                                                                                | V <sub>RET</sub>   |                    |                |               | 0.7                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                            | v    |
| Low Voltage                                                                                                                                                                                                                                                                                                                                    |                    | LVDS=1 (in the C   | onfiguration I | Bits), Ta=25℃ | 1.5                                                                                                                                                                                                                                                                                                                                | 1.7         | 2.0                                                                                                                                                                                                                                                                                                                        | V    |
| Detection                                                                                                                                                                                                                                                                                                                                      |                    | LVDS=0 (in the C   | onfiguration I | Bits), Ta=25℃ | 2.0                                                                                                                                                                                                                                                                                                                                | 2.2         | 2.5                                                                                                                                                                                                                                                                                                                        | V    |

#### \* Typical Characteristics

This graphs provided in this section are for design guidance only and are not tested or guaranteed.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean +  $3\sigma$ ) and (mean -  $3\sigma$ ) respectively where  $\sigma$  is standard deviation.



#### ADAM43P1108 User's Manual (V0.6-2015.12)



#### Internal RC Oscillator Characteristics

Low Voltage Detection (Temperature Characteristics)



| Davramatan                             | Created | Condition               | S   | 11.21 |                                                                                                                                          |      |
|----------------------------------------|---------|-------------------------|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| Parameter                              | Symbol  | Condition               | MIN | TYP   | MAX           MAX           VDD           AVREF           VDD           ±4.0           ±4.0           ±2.0           ±3.0           ±3.0 | Unit |
| Resolution                             | RADC    |                         |     | 12    |                                                                                                                                          | Bits |
| Analog Input                           | VAIN    | AVREFS = 0              | VSS | -     | VDD                                                                                                                                      | V    |
| Voltage Range                          | VAIN    | AVREFS = 1              | VSS | -     | AVREF                                                                                                                                    | V    |
| Analog Input                           |         | VDD = 5.0V              | 2.4 | -     | VDD                                                                                                                                      | V    |
| Power Supply AVRI<br>Voltage Range     |         | VDD = 3.0V              | 2.4 | -     | VDD                                                                                                                                      | v    |
| Overall Accuracy                       | EACC    |                         | -   | -     | ±4.0                                                                                                                                     | LSB  |
| Non-Linearity<br>Error                 | ENE     |                         | -   | -     | ±4.0                                                                                                                                     | LSB  |
| Differential<br>Non-Linearity<br>Error | EDE     | VDD=4.096V, fxin = 4MHz | -   | ±1.0  | ±2.0                                                                                                                                     | LSB  |
| Zero Offset Error                      | EOFF    |                         | -   | ±1.0  | ±3.0                                                                                                                                     | LSB  |
| Full Scale Error                       | EFE     |                         | -   | ±1.0  | ±3.0                                                                                                                                     | LSB  |
| Conversion Time                        | TCONV   | VDD = 5.5V ~ 2.7V       | 29  | -     | -                                                                                                                                        | μs   |
| AVREF Input<br>Current                 | IREF    | AVREFS = 1              | -   | 0.8   | 2.0                                                                                                                                      | mA   |

1.7.5. 12Bit A/D Conversion Characteristics (VDD=5.5  $\sim$  2.7V @fxin=30kHz~16MHz, Ta=25  $^\circ$ C)

## 1.7.6. AC Characteristics (Ta = $25^{\circ}$ C)

| Deremeter                       | Sumbal | Pin               | S    | l lus it |      |      |
|---------------------------------|--------|-------------------|------|----------|------|------|
| Parameter                       | Symbol | FIII              | min. | typ.     | max. | Unit |
| External clock input cycle time | tCP    | OSC               | 62.5 | 250      | 2500 | ns   |
| External clock input High       | tCPH   | OSC               |      | 0.5      |      | tCP  |
| External clock input Low        | tCPL   | OSC               |      | 0.5      |      | tCP  |
| System clock cycle time         | tSYS   | _                 |      | 4        |      | tCP  |
| External pulse width High       | tIH    | EC0, EC1          | 1    |          |      | tCP  |
| External pulse width Low        | tIL    | EC0, EC1          | 1    |          |      | tCP  |
| Externa pulse width Low         | tIL    | RESETB            | 8    |          |      | tSYS |
| Interrupt pulse width High      | tIH    | RESETB, KSCN, INT | 2    |          |      | tSYS |
| Interrupt pulse width Low       | tIL    | RESETB, KSCN, INT | 2    |          |      | tSYS |

## Minimum pulse width



## 2.1. Program Memory

The ADAM43P1108 can address maximum 4Kbytes (2K words  $\times$  16bits) for program memory. Program counter PC (A0~A10) is used to address the whole area of program memory having an instruction (16bits) to be next executed.

The program memory consists of 2K words.

The program memory is composed as shown below.



Fig.2.1 Configuration of Program Memory

## 2.2. Address Register

The following registers are used to address the ROM.

- **Program counter (PC) :** Available for addressing word on each page.
- Stack register (SR) : Stores returned-word address in the subroutine call mode.

## 2.2.1 Program counter :

This 11-bit binary counter increments for fetching a word to be addressed in the currently addressed page having an instruction to be next executed. For easier programming, at turning on the power, the program counter is reset to the zero location(0000H). Then the program counter specifies the next address. When BR, CAL or RET instructions are decoded, the switches on each step are turned off not to update the address. Then, for BR or CAL, address data are taken in from the instruction operands (A0 to A10), or for RET, and address including page address is fetched from stack register No. 1.

## 2.2.2. Stack register (SR)

The address stack register (ADS) stores a return address when the subroutine call instruction is executed or interrupt is acknowledged.

If subroutine or interrupts are nested to more than 8 levels, internal reset is occurred. The interrupt stack register(INTSK) saves the contents of Status Flag Register (SFR) when an interrupt is acknowledged.

The saved contents are restored when an interrupt return(RETI) instruction is executed. INTSK saves data each time an interrupt is acknowledged.

The programmer must keep in mind that the level of INTSK is 8. So, if more over 8 levels of interrupt occur, the first stored data is lost. There is different result between Stack overflow and interrupt stack overflow.

When clearing SP (Stack Pointer) with using "SPC" instruction, interrupt processing must be inhibited before "SPC".

## 2.3. Data Memory (RAM)

128 nibbles (128 words  $\times$  4bits) is incorporated for storing data.



Fig.2.2 Data Memory

## 2.3.1. Data memory(RAM) addressing method

The whole data memory area is directly addressed by 8-bit ram data address point (dp).

Index data memory addressing is available using X-register and Y-register. In this case, X-register is added upper 4bit of data point and Y-register is added lower 4bit of data point.



## 2.3.2. Data memory(RAM) data addressing example Program





Program Example)

LDM MEM0,#3h LYI #7 LXI #1 LDA MEM0 EIX LDM MEM0,A DIX

Result after executing ; MEM0 = 3hMEM0 + X + Y = 3h

## 2.4. General Function Registers

#### 2.4.1. X-register (X)

X-register is consist of 4bit, X-register is used for data memory indexing register.

2.4.2. Y-register (Y)

Y-register is consist of 4 bits. It can used for a general-purpose register. Y-register also used for data memory indexing register.

#### 2.4.3. Accumulator (ACC)

The 4-bit register for holding data and calculation results.

2.4.4. Peripheral Address Register(PAR)

The 6-bit address register for addressing peripheral registers including address buff register(ABR) , data buff register (DBR).

#### 2.4.5. Address Buff Register (ABR)

The 16-bit register for address buffer.

The address of Address Buffer Register (ABR) is  $38h \sim 3Bh$  on the peripheral register. It is composed by 4 registers (ABR0, ABR1, ABR2, ABR3) and each register is 4 bit.

#### 2.5. Buffer Registers (DBR, ABR)

Buffer registers are two types of 16 bit registers composed of 4-ninbble registers.

One is Data Buffer Register (DBR) and the other is Address Buffer Register (ABR).

The address of Data Buffer Register (DBR) is 3Ch  $\sim$  3Fh and the address of Address Buffer Register (ABR) is 38h  $\sim$  3Bh on the peripheral register.

These buffers are mainly used for Data transferring between ROM and buffer or peripheral registers and buffer. They are also used for general purpose register for data manipulation, data storage and intermediate buffer.

#### 2.5.1. Function of Address Buff Register (ABR)

The most important function of ABR is ROM address pointer. ABR must be used for reading data from ROM. The data pointed by ABR is read to DBR. ABR value is varied through peripheral control instruction and "INC ABR".

## 2.5.2. Function of Data Buff Register(DBR)

The most important function of DBR is intermediate (window) buffer for transferring data between peripheral registers and reading data from ROM.

When the data of ROM is read by "LDW @ABR", one word of ROM is fetched to DBR. The MSB of ROM data is written to DBR3 and LSB to DBR0.

If the data of pointed ROM is 1234h, each DBR has the data as DBR0 = 4h, DBR1 = 3h, DBR2 = 2h and DBR3 = 1h.

DBR is also used for reading some peripheral register data by 12bit unit or 8bit unit. The peripheral registers are T0CR and T1CR.

Note) HEX. File maps the data as big endian type. Be careful to read the ROM data. When the programmer assigns the data like below, the ROM data is mapped as below. DB 12h, 34h  $\rightarrow$  ROM data = 1234h



Fig.2.4 The internal Data flow among DBR, ABR registers and ROM

## 2.6. Status Flag Registers (SFR)

Status Flag Register (SFR) consists of 4-bit register.

Each of the flags show the post state of operation and the flags determining the CPU operation, initialized as 0h in reset state.

When an interrupt is occurred, the value of SFR keep the value of pre-interrupt except for I flag. So, be careful to initialize the SFR status for getting reliable result in Interrupt sub-routine.



#### 2.6.1 Carry flag (C)

- Carry flag bit is set when there is carry or borrow After executing ADDC / SUBC / ARRC/ARLC instructions.

- Set by SETC and clear by CLRC.
- Load from the assigned bit of Peripheral Registers by LDC
- Transfer to the assigned bit of Peripheral Registers by STC

#### 2.6.2 Index flag (D)

- The control bit of ram data address point indexed or not.
- X-register and Y-register is used for index addressing.
- Set and cleared by EIX, DIX.
- 2.6.3 Interrupt enable flag (I)
  - Master enable flag of interrupt.
  - Set and cleared by EI, DI
  - This Flag immediately becomes "0" when an interrupt is served.

## 2.6.4 Status flag (S)

- According to the condition after executing an instruction , set or clear.
- Can not be set or clear by any instruction.
- This Flag decides whether operation of BR and CALL would be done or not.

# 2.7. Peripheral Registers

| Peripheral | Function Registers                     | Read  | Symbol | RESET Value |
|------------|----------------------------------------|-------|--------|-------------|
| Address    |                                        | Write | Gymbol | 3210        |
| 00 h       | PORT PA DATA REG.                      | R/W   | * PADR | F           |
| 01 h       | PORT PA PULL-UP SELECTION REG.         | W     | PAPU   | F           |
| 02 h       | PORT PA OPEN DRAIN SELECTION REG.      | W     | PAOD   | F           |
| 03 h       | PORT PA DIRECTION REG.                 | R/W   | PADD   | 0           |
| 04 h       | PORT PA STOP RELEASE SELECTION REG.    | W     | PAST   | F           |
| 05 h       | PORT PA FUNCTION SELECTION REG. LOW    | R/W   | PAFL   | 0           |
| 06 h       | PORT PA FUNCTION SELECTION REG. HIGH   | R/W   | PAFH   | 0           |
| 07 h       | PORT PA CURRENT DRIVING CONTROL REG.   | W     | PACD   | 0           |
| 08 h       | PORT PB DATA REG.                      | R/W   | * PBDR | F           |
| 09 h       | PORT PB PULL-UP SELECTION REG.         | W     | PBPU   | F           |
| 0A h       | PORT PB OPEN DRAIN SELECTION REG.      | W     | PBOD   | F           |
| 0B h       | PORT PB DIRECTION REG.                 | R/W   | PBDD   | 0           |
| 0C h       | PORT PB STOP RELEASE SELECTION REG.    | W     | PBST   | F           |
| 0D h       | PORT PB FUNCTION SELECTION REG. LOW    | R/W   | PBFL   | 0           |
| 0E h       | PORT PB FUNCTION SELECTION REG. HIGH   | R/W   | PBFH   | 0           |
| 0F h       | PORT PB CURRENT DRIVING CONTROL REG.   | W     | PBCD   | 0           |
| 10 h       | Reserved                               |       |        |             |
| 11 h       | Reserved                               |       |        |             |
| 12 h       | Reserved                               |       |        |             |
| 13 h       | Reserved                               |       |        |             |
| 14 h       | Reserved                               |       |        |             |
| 15 h       | Reserved                               |       |        |             |
| 16 h       | Reserved                               |       |        |             |
| 17 h       | Reserved                               |       |        |             |
| 18 h       | Reserved                               |       |        |             |
| 19 h       | Reserved                               |       |        |             |
| 1A h       | EXT. INTERRUPT EDGE SELECTION REG.     | W     | IEDS0  | 0           |
| 1B h       | KEY SCAN INTERRUPT EDGE SELECTION REG. | W     | IEDS1  | 0           |
| 1C h       | INTERRUPT REQUEST FLAG REG. 0          | R/W   | IRQR0  | 0           |
| 1D h       | INTERRUPT REQUEST FLAG REG. 1          | R/W   | IRQR1  | 0           |
| 1E h       | INTERRUPT ENABLE REG. 0                | R/W   | IENR0  | 0           |
| 1F h       | INTERRUPT ENABLE REG. 1                | R/W   | IENR1  | 0           |

Note1> \* Using the bit access Instruction, bit is read-modified operation (SETR1/CLRR1/STC Instructions)

| Peripheral<br>Address | Function Registers                            | Read<br>Write | Symbol | RESET Value |
|-----------------------|-----------------------------------------------|---------------|--------|-------------|
| 20 h                  | TIMER 0 MODE REG. 0                           | R/W           | TOMRO  | 3210        |
| 20 h                  | TIMER 0 MODE REG. 1                           | R/W           | T0MR1  | 0           |
| 22 h                  | TIMER 0 MODE REG. 2                           | R/W           | T0MR2  | 0           |
|                       | TIMER 0 DATA 0 LOW REG.(PWM0 DUTY LSB)        | W             | TODOL  | undefined   |
| 23 h                  | TIMER 0 COUNT REG. LOW                        | R             | TOCRL  | undefined   |
|                       | TIMER 0 DATA 0 MIDDLE REG.(PWM0 DUTY MSB)     | W             | TODOM  | undefined   |
| 24 h                  | TIMER 0 COUNT REG. MIDDLE                     | R             | TOCRM  | undefined   |
|                       | TIMER 0 DATA 0 HIGH REG.(PWM0 DUTY EXTENSION) | W             | TODOH  | undefined   |
| 25 h                  | TIMER 0 COUNT REG. HIGH                       | R             | TOCRH  | undefined   |
| 26 h                  | TIMER 0 DATA 1 LOW REG.(PWM0 PERIOD LSB)      | W             | T0D1L  | undefined   |
| 27 h                  | TIMER 0 DATA 1 MIDDLE REG.(PWM0 PERIOD MSB)   | W             | T0D1M  | undefined   |
| 28 h                  | TIMER 0 DATA 1 HIGH REG.(PWM0 CYCLE)          | W             | T0D1H  | undefined   |
| 29 h                  | TIMER 1 MODE REG. 0                           | R/W           | T1MR0  | 0           |
| 2A h                  | TIMER 1 MODE REG. 1                           | R/W           | T1MR1  | 0           |
|                       | TIMER 1 DATA 0 LOW REG.(PWM1 DUTY)            | W             | T1D0L  | undefined   |
| 2B h                  | TIMER 1 COUNT REG. LOW                        | R             | T1CRL  | undefined   |
|                       | TIMER 1 DATA 0 HIGH REG.(PWM1 DUTY EXTENSION) | W             | T1D0H  | undefined   |
| 2C h                  | TIMER 1 COUNT REG. HIGH                       | R             | T1CRH  | undefined   |
| 2D h                  | TIMER 1 DATA 1 LOW REG.(PWM1 PERIOD)          | W             | T1D1L  | undefined   |
| 2E h                  | TIMER 1 DATA 1 HIGH REG.(PWM1 CYCLE)          | W             | T1D1H  | undefined   |
| 2F h                  | TIMER MODULATION CONTROL REG.                 | W             | TMCR   | F           |
| 30 h                  | Reserved                                      |               |        |             |
| 31 h                  | Reserved                                      |               |        |             |
| 32 h                  | WATCH-DOG TIMER CONTROL REG.                  | W             | WDTCR  | 1000        |
| 33 h                  | VTG. DETECTION INDICATOR ENABLE REG.          | W             | VDIER  | 0           |
| 33 H                  | VTG DETECTION INDICATOR FLAG REG.             | R             | VDIR   | - 0 0 0     |
| 34 h                  | A/D CONVERTER MODE REG. 0                     | R/W           | ADCM0  | 0001        |
| 35 h                  | A/D CONVERTER MODE REG. 1                     | W             | ADCM1  | 0           |
| 35 11                 | A/D CONVERTER DATA REG. 0                     | R             | ADCR0  | undefined   |
| 36 h                  | A/D CONVERTER INPUT SELECTION REG.            | W             | ADCIS  | 0           |
| 30 11                 | A/D CONVERTER DATA REG. 1                     | R             | ADCR1  | undefined   |
| 37 h                  | A/D CONVERTER DATA REG. 2                     | R             | ADCR2  | undefined   |
| 38 h                  | ADDRESS BUFF REGISTER 0                       | R/W           | ABR0   | undefined   |
| 39 h                  | ADDRESS BUFF REGISTER 1                       | R/W           | ABR1   | undefined   |
| 3A h                  | ADDRESS BUFF REGISTER 2                       | R/W           | ABR2   | undefined   |
| 3B h                  | ADDRESS BUFF REGISTER 3                       | R/W           | ABR3   | undefined   |
| 3C h                  | DATA BUFF REGISTER 0                          | R/W           | DBR0   | undefined   |
| 3D h                  | DATA BUFF REGISTER 1                          | R/W           | DBR1   | undefined   |
| 3E h                  | DATA BUFF REGISTER 2                          | R/W           | DBR2   | undefined   |
| 3F h                  | DATA BUFF REGISTER 3                          | R/W           | DBR3   | undefined   |

Note1> '-' is reserved bit , it must be read to "0".

The ADAM43 has 6 I/O ports which are PA (3 I/O), PB (3 I/O).

PA and PB Port have Stop Release selection register.

Pull-up resistor of PA and PB ports can be selectable by program.

Pull-down resistor of PB2 and PB3 ports can be selectable by program.

PA and PB ports contains data direction register which controls I/O and data register which stores port data.

PA, PB2 and PB3 Ports have Open Drain selection register and Data register.

<u>\*PB1 is Open Drain output only.</u>

| Port    | Data<br>Reg. | Pull-up<br>Reg. | Open-Drain<br>Reg. | Direction<br>Reg. | Stop<br>Release Reg. |
|---------|--------------|-----------------|--------------------|-------------------|----------------------|
| port PA | PA           | PAPU            | PAOD               | PADD              | PAST                 |
| port PB | РВ           | PBPU            | PBOD               | PBDD              | PBST                 |

| I/O Ports | Registers |
|-----------|-----------|
|-----------|-----------|

| R/W           | R/W  | W       | W       | R/W   | W       |
|---------------|------|---------|---------|-------|---------|
| Initial value | 1111 | -111    | -111    | 0000  | -111    |
| default       | fh   | disable | disable | input | disable |

| Port    | Function<br>Reg. | Current Driving<br>Reg. |  |
|---------|------------------|-------------------------|--|
| port PA | PAFH/PAFL        | PACD                    |  |
| port PB | PBFH/PBFL        | PBCD                    |  |

| R/W           | R/W     | W       |  |
|---------------|---------|---------|--|
| Initial value | 0000    | -000    |  |
| default       | disable | disable |  |

## 3.1. Port PA

| Pin Name                     | Port<br>Selection | Function Selection                                                                   |
|------------------------------|-------------------|--------------------------------------------------------------------------------------|
| PA0/AN0/EC0 INT0/TMA/KSA0    | PA0 (I/O)         | AN0 Input / Event Count-0 input / INT0 Input /<br>Timer0/1 Logic Output / KSA0 Input |
| PA1/AN1/EC1/INT1/KSA1        | PA1 (I/O)         | AN1 Input / Event Count-1 input / INT1 Input / KSA1 Input                            |
| PA2/AN2/*EC0/*INT0/PWM0/KSA2 | PA2 (I/O)         | AN2 Input / Event Count-2 input / INT0 Input /<br>PWM0 Output / KSA2 Input           |

#### 3.1.1. PA Data Register (PA)



PA data register (PA) is 4-bit register to store data of port PA. When set as the output state by PA, and data is written in PA, data is outputted into PA pin. When set as the input state, input state of pin is read. The initial value of PA is "Fh" in reset state. At output state, if port PA is read, PA Data Register is read instead of port PA.

3.1.2. PA Pull-up Resistor Control Register (PAPU)



PA pull-up resistor control register (PAPU) is 4-bit register and can control pull-up on or off each bit, if corresponding port is selected as input. If PAPU is selected as "0", pull-up is enabled and if selected as "1", it is disabled. PAPC is write-only register and initialized as "Fh" in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.

3.1.3. PA Open Drain Assign Register (PAOD)



PA Open Drain Assign Register (PAOD) is 4-bit register, and can assign PA port as open drain output port each bit If PAOD is selected as "0", port PA is open drain output, and if selected as "1", it is push-pull output. PAOD is write-only register and initialized as "Fh" in reset state.

3.1.4. PA I/O Data Direction Register (PADD)



PA I/O Data Direction Register (PADD) is 4-bit register, and can assign input state or output state to each bit. If PADD is "0", port PA is in the input state, and if "1", it is in the output state. Since PADD is initialized as "0h" in reset state, the whole port PA becomes input state.





PA Stop Release Selection Register (PAST) is 4-bit register, and can assign stop release pin or not. If PAST is selected as "0", stop release function is enabled and if selected as "1", it is disabled. PAST is write-only register and initialized as "Fh" in reset state.

3.1.6. PA Function Selection Register (PAFL)



3.1.7. PA Function Selection Register (PAFH)



### Selection Mode of PAFL

| Bit Name |                            | Selection Mode  | Remarks   |
|----------|----------------------------|-----------------|-----------|
|          | 00                         | I/O             |           |
|          | 01                         | ADC selection   | AN1       |
| PAI      | PA1 10 Interrupt selection |                 | INT1(EC1) |
|          | 11                         | AVREF selection | VREF      |
|          | 00                         | I/O             |           |
| DAO      | 01                         | ADC selection   | AN0       |
| PAU      | PA0 10 Interrupt selection |                 | INT0(EC0) |
|          | 11                         | Tout selection  | ТМА       |

Selection Mode of PAFH

| Bit Name |    | Selection Mode      | Remarks    |
|----------|----|---------------------|------------|
|          | 00 | -                   |            |
|          | 01 | -                   |            |
| _        | 10 | -                   |            |
|          | 11 | -                   |            |
| PA2      | 00 | I/O                 |            |
|          | 01 | ADC selection       | AN2        |
|          | 10 | Interrupt selection | *INT0(EC0) |
|          | 11 | Tout selection      | PWM0       |
|          |    | I out selection     | PWM0       |

## 3.1.8. PA Current Driving Control Register (PACD)



PA Current Driving Control Register (PACD) is 4-bit register, and can enhance current drive capacity. If PACD is selected as "1", current driving control function is enabled and if selected as "0", it is disabled. PACD is write-only register and initialized as "0h" in reset state.

#### 3.2. Port PB

| Pin Name             | Port Function Selection |                                                |
|----------------------|-------------------------|------------------------------------------------|
| PB1/PWM0/RESETB/KSB1 | PB1 (I/O)               | PWM0 Output / RESETB Input / KSB1 Input        |
| PB2/AN6/PWM1/KSB2    | PB2 (I/O)               | AN6 Input / PWM1 Output / KSB2 Input           |
| PB3/AN7/TMB/KSB3     | PB3 (I/O)               | AN7 Input / Timer0/1 Logic Output / KSB3 Input |

#### 3.2.1. PB Data Register (PB)

| bit           | 3   | 2   | 1   | 0   |     |
|---------------|-----|-----|-----|-----|-----|
| PB            | PB3 | PB2 | PB1 | -   | 08h |
| Initial value | 1   | 1   | 1   | 1   |     |
| R/W           | R/W | R/W | R/W | R/W |     |

PB data register (PB) is 4-bit register to store data of port PB. When set as the output state by PB, and data is written in PB, data is outputted into PB pin.

When set as the input state, input state of pin is read. The initial value of PB is "Fh" in reset state. At output state, if port PB is read, PB Data Register is read instead of port PB.

3.2.2. PB Pull-up Resistor Control Register (PBPU)

| bit           | 3     | 2     | 1     | 0 |     |
|---------------|-------|-------|-------|---|-----|
| PBPU          | PBPU3 | PBPU2 | PBPU1 | - | 09h |
| Initial value | 1     | 1     | 1     | - |     |
| R/W           | W     | W     | W     | W |     |

PB pull-up resistor control register (PBPU) is 4-bit register and can control pull-up on or off each bit, if corresponding port is selected as input. If PBPC is selected as "0", pull-up is enabled and if selected as "1", it is disabled. PBPU is write-only register and initialized as "Fh" in reset state. The pull-up is automatically disabled, if corresponding port is selected as output.

3.2.3. PB Open Drain Assign Register (PBOD)



PB Open Drain Assign Register (PBOD) is 4-bit register, and can assign PB port as open drain output port each bit If PBOD is selected as "0", port PB is open drain output, and if selected as "1", it is push-pull output. PBOD is write-only register and initialized as "Fh" in reset state.

3.2.4. PB I/O Data Direction Register (PBDD)

| bit           | 3     | 2     | 1     | 0   |     |
|---------------|-------|-------|-------|-----|-----|
| PBDD          | PBDD3 | PBDD2 | PBDD1 | -   | 0Bh |
| Initial value | 0     | 0     | 0     | 0   |     |
| R/W           | R/W   | R/W   | R/W   | R/W |     |

PB I/O Data Direction Register (PBDD) is 4-bit register, and can assign input state or output state to each bit. If PBDD is "0", port PB is in the input state, and if "1", it is in the output state. Since PBDD is initialized as "0h" in reset state, the whole port PB becomes input state.





PB Stop Release Selection Register (PBST) is 4-bit register, and can assign stop release pin or not. If PBST is selected as "0", stop release function is enabled and if selected as "1", it is disabled. PBST is write-only register and initialized as "Fh" in reset state.

3.2.6. PB Function Selection Register (PBFL)



3.2.7. PB Function Selection Register (PBFH)



#### Selection Mode of PBFL

| Bit Name |    | Selection Mode | Remarks |
|----------|----|----------------|---------|
|          | 00 |                |         |
| 001      | 01 | I/O            |         |
| PB1      | 10 |                |         |
|          | 11 | Tout selection | PWM0    |
|          | 00 | 1              |         |
|          | 01 | 1              |         |
| _        | 10 | I              |         |
|          | 11 | _              |         |

Selection Mode of PBFH

| Bit Name |    | Selection Mode      | Remarks |
|----------|----|---------------------|---------|
|          | 00 | I/O                 |         |
| PB3      | 01 | ADC selection       | AN7     |
|          | 10 | Pull-down selection |         |
|          | 11 | Tout selection      | ТМВ     |
|          | 00 | I/O                 |         |
| 000      | 01 | ADC selection       | AN6     |
| PB2      | 10 | Pull-down selection |         |
|          | 11 | Tout selection      | PWM1    |
|          |    |                     |         |

3.2.8. PB Current Driving Control Register (PBCD)



PB Current Driving Control Register (PBCD) is 4-bit register, and can enhance current drive capacity. If PBCD is selected as "1", current driving control function is enabled and if selected as "0", it is disabled. PBCD is write-only register and initialized as "0h" in reset state.

# 4. Oscillation Circuit

## 4.1. Oscillation Circuit

Oscillation circuit is designed to be used either with a ceramic or crystal oscillator. Clock from oscillation circuit makes CPU clock via clock pulse generator, and then provide peripheral hardware clock.

There are 5 types of Oscillation circuit and they can be divided in 8 different oscillator option modes. The user can used OTP Configuration Option Bits (OSCS2 through OSCS0) to select one of these 5 types. Refer to Table 4.1.

- XT : Crystal (Ceramic) Oscillator
- LP : 32.768kHz Crystal Oscillator
- ERC : External RC Oscillator
- ECKIN : External Clock Input
- IRC : Internal RC Oscillator (4 modes)

First type is Crystal (Ceramic) oscillator circuit. OSC1 and OSC2 are the input and output, respectively, a inverting amplifier which can be set for use as an on-chip oscillator. It is designed to be used either with a ceramic resonator or crystal oscillator. In the STOP mode, oscillation stop, OSC2 state goes to "High", OSC1 state goes to "Low", and built-in feedback resistor is disabled. Second type is 32.768kHz Ceramic oscillator circuit. It operate same as the first type.

Third type is External clock input circuit. Through the OSC1, external clock is driven. Minimum and maximum high and low times specified on the data sheet must be observed. OSC2/PB2 is selectable the normal I/O port PB2. In STOP mode, OSC1 state does not go to "Low", and external clock does not affect to Internal.



Fig.4.1 Oscillator configurations

Another type is RC oscillation circuits. It can be constructed by connecting a resistor between OSC1 and VDD. It offers additional cost savings for timing insensitive applications. The RC oscillator frequency is a function of the supply voltage, the external resistor (Rext) value, and the operating temperature. The user needs to take into account variation due to tolerance of external R components used. In STOP mode, OSC1 state goes to "Hi-Z" and RC Oscillation is stopped.

The other type is Internal RC Oscillator circuit. In this type, OSC1/PB3 is used the normal I/O port PB3, OSC2/PB2 is selectable the normal I/O port PB2. The Internal Oscillator is calibrated in Factory. In STOP mode, Internal RC oscillator is stopped.

Below table shows the selection of the oscillator type by OTP Configuration Option Bits (Address 8000h,  $OSCS2 \sim OSCS0$ ). (Refer to 14.2. Configuration Option Bit Description)

|         | OSCS[2:0] |         | OSCS[2:0]                |           | 0001      | 0000 |
|---------|-----------|---------|--------------------------|-----------|-----------|------|
| OSCS[2] | OSCS[1]   | OSCS[0] | Oscillator Modes         | OSC1      | OSC2      |      |
| 1       | 1         | 1       | Internal RC 4MHz         | PB3 (I/O) | PB2 (I/O) |      |
| 1       | 1         | 0       | Internal RC 8MHz         | ↑         | ↑         |      |
| 1       | 0         | 1       | Internal RC 16MHz        | ↑         | ↑         |      |
| 1       | 0         | 0       | External RC Oscillator   | OSC1 (I)  | PB2 (I/O) |      |
| 0       | 1         | 1       | External Clock Input     | OSC1 (I)  | PB2 (I/O) |      |
| 0       | 1         | 0       | XT Oscillator            | OSC1 (I)  | OSC2 (O)  |      |
| 0       | 0         | 1       | Low Frequency Oscillator | OSC1 (I)  | OSC2 (O)  |      |
| 0       | 0         | 0       | Internal RC 1MHz         | PB3 (I/O) | PB2 (I/O) |      |

Table. 4.1 Oscillator Type and Modes Selection

## 4.2. System Clock & Peripheral Clock Generator Block Diagram



| Peripheral<br>Clock           | PS0/2                | PS0                  | PS1           | PS2               | PS3                              | PS4           | <br>PS10                              | PS11                              |
|-------------------------------|----------------------|----------------------|---------------|-------------------|----------------------------------|---------------|---------------------------------------|-----------------------------------|
| Frequency<br>[MHz]            | f <sub>osc</sub> * 2 | f <sub>OSC</sub> /2º | $f_{OSC}/2^1$ | $f_{\rm OSC}/2^2$ | f <sub>OSC</sub> /2 <sup>3</sup> | $f_{OSC}/2^4$ | <br>f <sub>OSC</sub> /2 <sup>10</sup> | f <sub>OSC</sub> /2 <sup>11</sup> |
| Period [us]<br>(at fosc=4MHz) | 0.125                | 0.25                 | 0.5           | 1.0               | 2.0                              | 4.0           | <br>256                               | 512                               |

## 5. Watch Dog Timer

## 5.1. Watch Dog Timer (WDT)

Watch dog timer is organized binary of 19 steps. The signal of  $f_{OSC}/4$  cycle comes in the first step of WDT after WDT reset. If this counter was overflowed, reset signal automatically come out so that internal circuit is initialized. The overflow time is initially  $2^{18} \times 4/f_{OSC}$  (262.144ms at  $f_{OSC} = 4.0$ MHz), it is selectable by WDT Control Register (WDTCR). Normally, the binary counter must be reset before the overflow by using reset instruction (WDTC), Power-on reset pulse or Low VDD detection pulse. It is constantly reset in STOP and SLEEP mode. When STOP and SLEEP are released, counting is restarted.

If it's executed the STOP instruction after setting the bit RWDTEN of WDTCR to "1", the Internal RC-Ring Oscillated Watch-dog Timer (RCWDT) mode is activated.

| 111 110 1 001        | ner or ricegi |        |        |        |     |
|----------------------|---------------|--------|--------|--------|-----|
| bit                  | 3             | 2      | 1      | 0      |     |
| WDTCR                | WDTRST        | RWDTEN | WDTCK1 | WDTCK0 | 32h |
| Initial value<br>R/W | 1<br>W        | 0<br>W | 0<br>W | 0<br>W |     |

## 5.1.1. WDT Control Register

| WDTRST 0 |                                        | WDT interrupt enable, when WDT Overflow is occurred.          |  |  |
|----------|----------------------------------------|---------------------------------------------------------------|--|--|
|          |                                        | System Reset enable, when WDT Overflow is occurred. (default) |  |  |
|          | 0 RCWDT mode disable (fosc/4 selected) |                                                               |  |  |
| RWDTEN 1 |                                        | RCWDT Oscillator Enable & RCWDT mode enable                   |  |  |
|          | 00                                     | WDT Overflow Time is 2 <sup>18</sup> x Tck                    |  |  |
| WDTCK1   | 01                                     | WDT Overflow Time is $2^{17} \times Tck$                      |  |  |
| WDTCK0   | 10                                     | WDT Overflow Time is 2 <sup>16</sup> × Tck                    |  |  |
|          | 11                                     | WDT Overflow Time is 2 <sup>15</sup> × Tck                    |  |  |

#### Reset or Interrupt Wakeup Time (Example)

|            | Tck * 2 <sup>18</sup> | Tck * 2 <sup>17</sup> | Tck * 2 <sup>16</sup> | Tck * 2 <sup>15</sup> | Unit |
|------------|-----------------------|-----------------------|-----------------------|-----------------------|------|
| Tck = 1us  | 262.144               | 131.072               | 65.536                | 32.768                |      |
| Tck = 8us  | 2,097.152             | 1,048.076             | 524.288               | 262.144               | ms   |
| Tck = 16us | 4,194.304             | 2,097.152             | 1,048.076             | 524.288               |      |



Fig.5.1 Block Diagram of Watch-dog Timer

6. Timer

## 6.1. Timer

6.1.1. Timer operation mode

Timer is basically made of Timer Data Register, Timer Mode Register and control circuit. The types of Timer are 12bit binary counter Timer0 (T0), 8bit binary counter Timer1 (T1).

**Timer0 Data Register** consists of Timer0 Data 0 High Register (T0D0H), Timer0 Data 0 Middle Register (T0D0M), Timer0 Data 0 Low Register (T0D0L), Timer0 Data 1 High Register (T0D1H), Timer0 Data 1 Middle Register (T0D1M) and Timer0 Data 1 Low Register (T0D1L).

**Timer1 Data Register** consists of Timer1 Data 0 High Register (T1D0H), Timer1 Data 0 Low Register (T1D0L), Timer1 Data 1 High Register (T1D1H) and Timer1 Data 1 Low Register (T1D1L).

| Timer0 | <ul> <li> 12-bit Interval Timer</li> <li> 12-bit Event Counter</li> <li> 12-bit Capture Timer</li> <li> 12-bit rectangular-wave output</li> <li> (8 + 4) Pulse Width Modulation output</li> </ul> |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timer1 | <ul> <li> 8-bit Interval Timer</li> <li> 8-bit Event Counter</li> <li> 8-bit Capture Timer</li> <li> 8-bit rectangular-wave output</li> <li> (6 + 2) Pulse Width Modulation output</li> </ul>     |



Fig.6.1 Timer/Counter Block diagram

### 6.2. Timer0

## 6.2.1. Timer0(T0) Block Diagram



## 6.2.2. Timer0 Control Register



### Selection Mode of T0MR0

| Bit Name |                                          |                          | Selection Mode     | Remarks |
|----------|------------------------------------------|--------------------------|--------------------|---------|
| TOOR     | Timor <sup>0</sup> Clear / start Control | 0                        | Timer0 Stop        |         |
| TOCS     | Timer0 Clear / start Control             | 1 Timer0 Clear and Start |                    |         |
| TOON     |                                          | 0                        | Timer0 Pause       |         |
| T0CN Tir | Timer0 Pause / Continue Control          | 1                        | Timer0 continue    |         |
|          |                                          | 0                        | Timer0 Count       |         |
| TOEG     | Timer0 Count Control                     | 1                        | Timer0 Count + 1   |         |
|          |                                          | 0                        | Timer/Counter Mode |         |
| TOCPE    | Input capture Mode selection             | 1                        | Capture Mode       |         |

### • Timer0 Mode Register 1 (T0MR1)



### Selection Mode of T0MR1

| Bit Name                              |                                  |            | Selection Mode                            |                                         | Remarks |
|---------------------------------------|----------------------------------|------------|-------------------------------------------|-----------------------------------------|---------|
| FMODE                                 | Input clock selection master bit |            | 0                                         | 1                                       |         |
|                                       |                                  | 000        | PS0 (f <sub>osc</sub> /2º)                | *PS0/2 (f <sub>osc</sub> *2)            |         |
| T0CK2<br>T0CK1 Input clock s<br>T0CK0 |                                  | 001        | PS2 (f <sub>OSC</sub> /2 <sup>2</sup> )   | PS1 (f <sub>OSC</sub> /21)              |         |
|                                       |                                  | 010<br>011 | PS4 (f <sub>OSC</sub> /2 <sup>4</sup> )   | PS3 (f <sub>osc</sub> /2 <sup>3</sup> ) |         |
|                                       |                                  |            | PS6 (f <sub>OSC</sub> /2 <sup>6</sup> )   | PS5 (f <sub>osc</sub> /2 <sup>5</sup> ) |         |
|                                       | Input clock selection            | 100        | PS8 (f <sub>OSC</sub> /2 <sup>8</sup> )   | PS7 (f <sub>OSC</sub> /27)              |         |
|                                       |                                  | 101        | PS11 (f <sub>OSC</sub> /2 <sup>11</sup> ) | PS9 (f <sub>OSC</sub> /2 <sup>9</sup> ) |         |
|                                       | Γ                                | 110        | Not Available                             |                                         |         |
|                                       |                                  | 111        | EC0                                       | EC1                                     |         |

<u>Caution : PS0/2 must be used only in the case of fosc  $\leq$  4.0MHz</u>

### • Timer0 Mode Register 2 (T0MR2)



### Selection Mode of T0MR2

| Bit<br>Name |                                    |   | Selection Mode                                  | Remark<br>s |
|-------------|------------------------------------|---|-------------------------------------------------|-------------|
|             | Timer/DW/M Made Calestian          | 0 | Timer0 Normal Mode                              |             |
| PVVIVIEU    | PWME0 Timer/PWM Mode Selection     |   | Timer0 PWM Mode                                 |             |
|             |                                    | 0 | Timer0 Interrupt Every 2 <sup>nd</sup> Overflow |             |
| INTS0       | Timer0 Interrupt Overflow Control  | 1 | Timer0 Interrupt Every Overflow                 |             |
|             | Time and Quite ut Quietaul         | 0 | Timer0 Output Normal                            |             |
| 00100       | OUTC0 Timer0 Output Control        |   | Timer0 Output Reverse                           |             |
|             |                                    | 0 | Timer0 Event counter Input Clock Normal         |             |
| CKC0        | Timer0 Event Counter Input Control | 1 | Timer0 Event counter Input Clock Reverse        |             |

### • Timer0 Data0 Register Low (T0D0L) = PWM0 DUTY LSB



• Timer0 Data0 Register Middle (T0D0M) = PWM0 DUTY MSB



• Timer0 Data0 Register High (T0D0H) = PWM0 DUTY EXTENSION

|               | 3      | 2      | 1      | 0      |     |
|---------------|--------|--------|--------|--------|-----|
| TODOH         | T0D0H3 | T0D0H2 | T0D0H1 | тороно | 25h |
| initial value | -      | -      | -      | -      |     |
| R/W           | W      | W      | W      | W      |     |

### • Timer0 Count Register Low (T0CRL)



### • Timer0 Count Register Middle (T0CRM)



### • Timer0 Count Register High (T0CRH)





### • Timer0 Data1 Register High (T0D1H) = PWM0 CYCLE

|               | 3      | 2      | 1      | 0      |     |
|---------------|--------|--------|--------|--------|-----|
| T0D1H         | T0D1H3 | T0D1H2 | T0D1H1 | T0D1H0 | 28h |
| initial value | -      | -      | -      | -      |     |
| R/W           | W      | W      | W      | W      |     |



|           |       | 3      | 2      | 1      | 0      |     |
|-----------|-------|--------|--------|--------|--------|-----|
| T0D1      | М     | T0D1L3 | T0D1L2 | T0D1L1 | T0D1L0 | 27h |
| initial v | /alue | -      | -      | -      | -      |     |
|           | R/W   | W      | W      | W      | W      |     |

### 6.2.3. Timer0 Caution

### Caution : In the case of TOEG is "0",

| T0CS (Clear & Start, move data from buffer to reg.) |                    |  |  |  |  |  |  |
|-----------------------------------------------------|--------------------|--|--|--|--|--|--|
| тск                                                 |                    |  |  |  |  |  |  |
| T0D1H/T0D1M/T0D1L                                   | 000h 000h 001h     |  |  |  |  |  |  |
| T0D0H/T0D0M/T0D0L                                   | 000h 001h 000h     |  |  |  |  |  |  |
| Counter                                             |                    |  |  |  |  |  |  |
| T0F<br>(regardless of TCK)                          |                    |  |  |  |  |  |  |
| T0<br>(regardless of TCK)                           | hold before status |  |  |  |  |  |  |
|                                                     |                    |  |  |  |  |  |  |
|                                                     |                    |  |  |  |  |  |  |

### Want to count "0", set T0EG=1

## 6.2.4. TMA/TMB OUTPUT CONTROL

## \* TMA/TMB Logical Output Control



### \* TMA/TMB Output Timing Diagram



### • TMA/TMB Output Control Register (TMCR)



### Selection Mode of TMCR

| Bit Name       |                      |    | Selection Mode      | Remarks |
|----------------|----------------------|----|---------------------|---------|
| TMCR3<br>TMCR2 |                      | 00 | T0 (Timer0 Output)  |         |
|                |                      | 01 | T1 (Timer1 Output)  |         |
|                | TMB Output Selection | 10 | T0 and T1           | ut)     |
|                |                      | 11 | fixed "L" (default) |         |
| TMCR1          |                      | 00 | T0 (Timer0 Output)  |         |
|                |                      | 01 | T1 (Timer1 Output)  |         |
|                | TMA Output Selection |    | T0 and T1           |         |
| TMCR0          |                      |    | fixed "L" (default) |         |

## 6.2.5. Timer0 Timing Diagram

\* 12-bit Timer/Counter mode Timing Diagram



Note > CS : Timer0 Counter Clear & Start.

Reload : Timer0 Data move from Data buffer to Data register.

#### \* Start / Stop operation



### \* 12-bit Timer/Counter mode Timing Diagram



### \* 12-bit Capture mode Timing Diagram



#### <u>PWM mode Timing Diagram : (T0EG=0)</u>



### • PWM mode Timing Diagram : (T0EG=1)



• PWM mode Condition :

Cycle ≠ #0 Period ≠ #1 Duty < Period Duty Extension < Cycle

### <u>PWM mode Timing Diagram : (T0EG=0, DUTY EXTENSION=0)</u>



#### <u>PWM mode Timing Diagram : (T0EG=1, DUTY EXTENSION=0)</u>





## • TO OUTPUT (PWM mode) Timing Diagram : (OUTC0=0, T0EG=0, DUTY EXTENSION=0)

## • TO OUTPUT (PWM mode) Timing Diagram : (OUTC0=1, T0EG=0, DUTY EXTENSION=0)





### • TO OUTPUT (PWM mode) Timing Diagram : (OUTC0=0, T0EG=0, DUTY EXTENSION=1)

### • TO OUTPUT (PWM mode) Timing Diagram : (OUTC0=1, T0EG=0, DUTY EXTENSION=1)



### 6.3. Timer1

## 6.3.1. Timer1(T1) Block Diagram



### 6.3.2. Timer1 Control Register



### Selection Mode of T1MR0

| Bit Name |                                 |   | Selection Mode         | Remarks |
|----------|---------------------------------|---|------------------------|---------|
| T1CS     | Timero Clear / start Control    | 0 | Timer1 Stop            |         |
|          | Timer0 Clear / start Control    | 1 | Timer1 Clear and Start |         |
| TION     |                                 | 0 | Timer1 Pause           |         |
| T1CN     | Timer0 Pause / Continue Control | 1 | Timer1 continue        |         |
|          |                                 | 0 | Timer1 Count           |         |
| T1EG     | Timer0 Count Control            | 1 | Timer1 Count + 1       |         |
|          |                                 | 0 | Timer/Counter Mode     |         |
| T1CPE    | Input capture Mode selection    | 1 | Capture Mode           |         |

## • Timer1 Mode Register 1 (T1MR1)



### Selection Mode of T1MR1

| Bit Name                    |                          | _   | Selection Mode                            | Remarks |
|-----------------------------|--------------------------|-----|-------------------------------------------|---------|
|                             |                          | 0   | Timer1 Normal Mode                        |         |
| PWME1                       | Timer/PWM Mode Selection | 1   | Timer1 PWM Mode                           |         |
| T1CK2<br>T1CK1 Inp<br>T1CK0 |                          | 000 | PS0 (f <sub>OSC</sub> /2º)                |         |
|                             |                          | 001 | PS1 (f <sub>OSC</sub> /2 <sup>1</sup> )   |         |
|                             |                          | 010 | PS2 (f <sub>OSC</sub> /2²)                |         |
|                             |                          | 011 | PS3 (f <sub>OSC</sub> /2 <sup>3</sup> )   |         |
|                             | Input clock selection    | 100 | PS5 (f <sub>OSC</sub> /2 <sup>5</sup> )   |         |
|                             |                          | 101 | PS7 (f <sub>OSC</sub> /2 <sup>7</sup> )   |         |
|                             |                          | 110 | PS11 (f <sub>osc</sub> /2 <sup>11</sup> ) |         |
|                             |                          | 111 | EC1                                       |         |



## 6.3.3. Timer1 Caution

### Caution : In the case of T1EG is "0",



Want to count "0", set T1EG=1

## 6.3.4. Timer1 Timing Diagram







## \* Start / Stop operation



### \* 8-bit Timer/Counter mode Timing Diagram



### \* 8-bit Capture mode Timing Diagram



### <u>PWM mode Timing Diagram : (T1EG=0)</u>



<u>PWM mode Timing Diagram : (T1EG=1)</u>



• PWM mode Condition :

Cycle ≠ #0 Period ≠ #1 Duty < Period Duty Extension < Cycle

### • PWM mode Timing Diagram : (T1EG=0, DUTY EXTENSION=0)





## • T1 OUTPUT (PWM mode) Timing Diagram : (T1EG=0, DUTY EXTENSION=0)

### • T1 OUTPUT (PWM mode) Timing Diagram : (T1EG=0, DUTY EXTENSION=1)



The ADAM43P1108 contains 8 interrupt sources; 3 externals and 5 internals. Nested interrupt services with priority control is also possible.

- ▶ 8 interrupt source (3Ext, 2Timer, 1 A/D, 1VDI, 1WDT)
- ▶ 8 interrupt vector
- ▶ 8 level nested interrupt control is possible.
- ▶ Read of interrupt request flag are possible.
- ▶ In interrupt accept, request flag is automatically cleared.

Interrupt Enable Register (IENR0, IENR1), Interrupt Request Register (IRQR0, IRQR1) and priority circuit.

Interrupt function block diagram is shown in Fig.7.1





### 7.1. Interrupt Source

Each interrupt vector is independent and has its own priority.

|                       | Mask         | Priority | Interrupt Source                  | INT Vector Addr. |
|-----------------------|--------------|----------|-----------------------------------|------------------|
|                       | Non-maskable | -        | RESET                             | 0000h            |
|                       |              | 1        | INT0 (External Interrupt 0)       | 0002h            |
|                       |              | 2        |                                   | 0004h            |
|                       |              | 3        | T0 (Timer0)                       | 0006h            |
| Hardware<br>Interrupt | maskable     | 4        | T1 (Timer1)                       | 0008h            |
|                       | maskable     | 5        | ADC (Analog Digital Converter)    | 000Ah            |
|                       |              | 6        | KS (Key Scan)                     | 000Ch            |
|                       |              | 7        | VDI (Voltage Detection Indicator) | 000Eh            |
|                       |              | 8        | WDT ( Watch-Dog Timer)            | 0010h            |

### Table 7.1 Interrupt Source

### 7.2. Interrupt Control Register

I flag of SFR is a interrupt mask enable flag. When I flag = ``0``, all interrupts become disable. When I flag = ``1``, interrupts can be selectively enabled and disabled by contents of corresponding Interrupt Enable Register(IENR0, IENR1).

When interrupt is occurred, interrupt request flag is set, and Interrupt request is detected at the edge of interrupt signal. The accepted interrupt request flag is automatically cleared during interrupt cycle process. The interrupt request flag maintains ``1`` until the interrupt is accepted

or is cleared in program. In reset state, interrupt request flag register (IRQR0,IRQR1) is cleared to ``0``. It is possible to read the state of interrupt register and to manipulate the contents of register.

### • External Interrupt Edge selection Register 0 (IEDS0)



| Bit Name |    | Selection Mode                             | Remarks |
|----------|----|--------------------------------------------|---------|
|          | 00 | -                                          |         |
| IED1H    | 01 | Falling Edge Selection (1-to-0 transition) |         |
| IED1L    | 10 | Rising Edge Selection (0-to-1 transition)  | INT1    |
|          | 11 | Both Edge Selection (Falling & Rising)     |         |
|          | 00 | -                                          |         |
| IED0H    | 01 | Falling Edge Selection (1-to-0 transition) |         |
| IEDOL    | 10 | Rising Edge Selection (0-to-1 transition)  | INT0    |
|          | 11 | Both Edge Selection (Falling & Rising)     |         |



### Selection Mode of IEDS1

| Bit Name |    | Selection Mode                             | Remarks            |
|----------|----|--------------------------------------------|--------------------|
|          | 0  | LVD Enable                                 |                    |
| LVDC     | 1  | LVD Disable                                | * Caution of usage |
|          | 0  | PA, PB port NMOS Driving Normal            |                    |
| VOLC     | 1  | PA, PB port NMOS Driving Decrease          | * Caution of usage |
|          | 00 | -                                          |                    |
| IEDKH    | 01 | Falling Edge Selection (1-to-0 transition) | KO                 |
| IEDKL    | 10 | Rising Edge Selection (0-to-1 transition)  | KS                 |
|          | 11 | Both Edge Selection (Falling & Rising)     |                    |

### • Interrupt Enable Register 0 (IENR0)



### Selection Mode of IENR0

| Bit Name |   | Selection Mode              |  |  |  |
|----------|---|-----------------------------|--|--|--|
| T1E      | 1 | Timer1 Interrupt enable     |  |  |  |
| TOE      | 1 | Timer0 Interrupt enable     |  |  |  |
| INT1E    | 1 | External Interrupt 1 enable |  |  |  |
| INTOE    | 1 | External Interrupt 0 enable |  |  |  |

# • Interrupt Enable Register 1 (IENR1)



## Selection Mode of IENR1

| Bit Name |   | Selection Mode                      |  |  |  |
|----------|---|-------------------------------------|--|--|--|
| WDTE     | 1 | WDT Timer overflow Interrupt enable |  |  |  |
| VDIE     | 1 | Voltage Detection Interrupt enable  |  |  |  |
| KSCE     | 1 | External Key Scan Interrupt enable  |  |  |  |
| ADCE     | 1 | ADC Interrupt enable                |  |  |  |





## Selection Mode of IRQR0

| Bit Name |   | Selection Mode                           |  |  |
|----------|---|------------------------------------------|--|--|
| T1F      | 1 | Timer1 Interrupt Request Flag enable     |  |  |
| TOF      | 1 | Timer0 Interrupt Request Flag enable     |  |  |
| INT1F    | 1 | External Interrupt 1 Request Flag enable |  |  |
| INTOF    | 1 | External Interrupt 0 Request Flag enable |  |  |

## • Interrupt Request Flag Register (IRQR1)



### Selection Mode of IRQR1

| Bit Name |   | Selection Mode                           |  |  |
|----------|---|------------------------------------------|--|--|
| WDTF     | 1 | WDT Timer overflow Interrupt Flag enable |  |  |
| VDIF     | 1 | Voltage Detection Interrupt Flag enable  |  |  |
| KSCF     | 1 | External Key Scan Interrupt Flag enable  |  |  |
| ADCF     | 1 | ADC Interrupt Flag enable                |  |  |

### 7.3. Interrupt Timing

Interrupt Request Sampling Time :

- -. Maximum 2 machine cycle (When execute LDW @ABR Instruction)
- -. Minimum 0 machine cycle

Interrupt preprocess step is 1 machine cycle

7.4. The valid timing after executing Interrupt control instructions

I flag is valid just after executing of EI/DI on the contrary.

### 7.5. Multiple Interrupt

If there is an interrupt, Interrupt Mask Enable Flag is automatically cleared before entering the Interrupt Service Routine. After then, no interrupt is accepted. If EI instruction is executed, interrupt mask enable bit becomes "1", and each enable bit can accept interrupt request. When two or more interrupts are generated simultaneously, the highest priority interrupt is accepted.

Key-Scan or External Interrupt Enable Processing Step



### 7.6. Interrupt Processing Sequence

When an interrupt is accepted, the on-going process is stopped and the interrupt service routine is executed. After the interrupt service routine is completed it is necessary to restore everything to the state before the interrupt occurred.

As soon as an interrupt is accepted, the content of the program counter is saved in the stack register which is 8 level stack area, and the contents of status flag register (SFR) is saved on the interrupt stack register (INTSK) which is 8 level stack area.

At the same time, the content of the vector address corresponding to the accepted interrupt, which is in the interrupt vector table, enters into the program counter and interrupt service is executed. In order to execute the interrupt service routine, it is necessary to write the jump addresses in the vector table corresponding to each interrupt.

### Interrupt Processing Step



### Fig.7.2 Interrupt Processing Step Timing



The analog-to-digital (A/D) converter allows conversion of an analog input signal to a corresponding digital number. The A/D module has 5 selectable analog inputs.

The output of sample is the input into converter , which generates the result via successive approximation.

The A/D module has four register. These registers are

- A/D CONVERTER MODE REG 0.(ADCM0)
- A/D CONVERTER MODE REG 1.(ADCM1)
- A/D CONVERTER INPUT SELECTION REG 2.(ADCIS)
- A/D CONVERTER DATA REG 0.(ADCR0)
- A/D CONVERTER DATA REG 1.(ADCR1)
- A/D CONVERTER DATA REG 2.(ADCR2)

#### Fig.8.1 A/D Converter Block Diagram



## 8.1. A/D Converter Control Registers

## • A/D Converter Mode Register (ADCM0)



#### Selection Mode of ADCM0

| Bit Name | Selection Mode |                                                              | Remarks        |
|----------|----------------|--------------------------------------------------------------|----------------|
|          | 0              | ADC Disable                                                  | if (STOP)      |
| ADEN     | 1              | ADC Enable                                                   | ADEN go to "L" |
|          | 0              | A/D Conversion is Stop                                       |                |
| ADST     | 1              | A/D Conversion is Start.<br>and cleared to "L" after 1 cycle |                |
| 4005     | 0              | A/D Conversion is Processing                                 |                |
| ADSF     | 1              | A/D Conversion is Completed                                  |                |

### • A/D Converter Mode Register (ADCM1)



## Selection Mode of ADCM1

| Bit Name  |     | Selection Mode                          | Remarks |
|-----------|-----|-----------------------------------------|---------|
|           | 000 | PS0 (f <sub>osc</sub> /2°)              |         |
|           | 001 | PS1 (f <sub>osc</sub> /2 <sup>1</sup> ) |         |
|           | 010 | PS2 (f <sub>osc</sub> /2 <sup>2</sup> ) |         |
|           | 011 | PS3 (f <sub>osc</sub> /2 <sup>3</sup> ) |         |
| ADCK[2:0] | 100 | PS4 (f <sub>osc</sub> /2 <sup>4</sup> ) |         |
|           | 101 | PS5 (f <sub>osc</sub> /2 <sup>5</sup> ) |         |
|           | 110 | PS6 (f <sub>osc</sub> /2 <sup>6</sup> ) |         |
|           | 111 | PS7 (f <sub>osc</sub> /2 <sup>7</sup> ) |         |
|           | 0   | Internal VDD for ADC power              |         |
| AVREFS    | 1   | VREF(/PA1) for ADC power                |         |

### • A/D Converter Input Selection Register (ADCIS)



### Selection Mode of ADCIS

| Bit Name   |               | Selection Mode      | Remarks                 |
|------------|---------------|---------------------|-------------------------|
|            | 0000          | Channel 0 Selection |                         |
|            | 0001          | Channel 1 Selection |                         |
|            | 0010          | Channel 2 Selection |                         |
|            | 0011          | Prohibit            |                         |
|            | 0100          | Prohibit            |                         |
|            | 0101          | Prohibit            |                         |
|            | 0110          | Channel 6 Selection |                         |
|            | 0111          | Channel 7 Selection |                         |
| CHSEL[3:0] | 1000          | Prohibit            | if analog port selected |
|            | 1001          | Prohibit            |                         |
|            | 1010          | Prohibit            |                         |
|            | 1011          | Prohibit            |                         |
|            | 1100 Prohibit | Prohibit            |                         |
|            | 1101          | Prohibit            |                         |
|            | 1110          | Prohibit            |                         |
|            | 1111          | Prohibit            |                         |

### • A/D Converter Data Register 0 (ADCR0)



#### AVDD & AVDD & CHSEL, ADCK SELECTION CHSEL, ADCK ADEN ADST ADCK ′ 8\*СК 🛛 8\*СК 🕽 8\*CK ( 8\*СК ) ( 8\*СК 🗙 8\*СК 🖁 4\*СК 16\*CK 8\*CK 8\*CK $\sim$ SETUP CONVERSION HOLD ADCR 11 10 9 8 $\sim$ 3 2 1 0 ADSF ADF <-----TOTAL ..... ..... 116 \* CK

ADC Timing Diagram

• Total Conversion Time is

(16 + 8\*12 + 4) \* ADCK

freq = 4MHz

| Bit Name | Selection Mode |                                                             |                    | Remarks |
|----------|----------------|-------------------------------------------------------------|--------------------|---------|
|          | 000            | Conversion Source Clock $(1/f_{OSC})$                       | 116 * 250ns = 29us |         |
| ADCK     | 010            | Conversion Source Clock (2 <sup>2</sup> /f <sub>OSC</sub> ) | 116 * 1us = 116us  |         |

### 8.2. A/D Converter Caution

### 8.2.1. Noise Countermeasures of AN[7:6], AN[2:0]

It is recommend that a capacitor be connected externally as shown Fig.8.2 in order to reduce noise.



Fig.8.2 Analog input pin Connecting capacitor

### 8.2.2. VREF pin input impedance

A series resistor string of approximately  $100k\Omega \sim 150k\Omega$  is connected between VREF pin and VSS.

If the output impedance of VREF is high, it will result in parallel connection to the series resistor between VREF pin and GND, and there will be a large reference voltage error.

### 8.3. A/D Converter Operation Flow



## 9. Power-Down Function

In power-down mode, power consumption is reduced considerably that in battery operation battery life time can be extended a lot. For applications where power consumption is a critical factor, ADAM43P1108 provides two kinds of power-down functions, STOP mode and SLEEP mode. In this 2 Modes, program processing is stopped.

### 9.1. Stop Mode

STOP mode can be entered by STOP instruction during program. In STOP mode, oscillator is stopped to make all clocks stop, which leads to less power consumption. All registers and RAM data are preserved. "NOP" instruction should be follows STOP instruction for pre-charge time of Data Bus line.

> ex) STOP : STOP instruction execution NOP : NOP instruction

Additionally, if it's executed the STOP instruction after setting the bit RCWDTEN of WDTCR to "1", the Internal RC-Oscillated Watchdog Timer mode is activated. In the Internal RC-Oscillated Watchdog Timer mode, STOP mode is also released by occurring of WDT Time-out selected by WDTCK[1:0].

The Ring-OSC oscillation period is vary with temperature, VDD and process variations from part to part. According to the bit RCWDTCK of WDTCR, the RCWDT oscillated watchdog timer time-out is shown at Chapter 5. Watch Dog Timer.

"NOP" instruction should be follows STOP instruction for pre-charge time of Data Bus line.

ex) LRI WDTCR, #0100b : set the bit of RCWDTEN WDTC : WDT clear STOP : STOP instruction execution NOP : NOP instruction

### 9.1.1. Stop Mode Release

Release of STOP mode is executed by Power on reset , Key input Port(one of PA, PB) which is selected by PAST and PBST register for stop release makes the edge selected by IEDS1[1:0], external interrupt and Low voltage detection (LVD) mode release .

When there is a release signal of STOP mode, the instruction execution starts after stabilization oscillation time.(  $2^{14} \times 4/fOSC = 16.384$ ms at fOSC = 4.0MHz)

| Release Factor                               | Release Method                                                                                  | Release Time                                                    |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Power on Reset                               | By Power on reset, Stop mode is release and system is initialized.                              | 7.2ms + 57×2 <sup>10</sup> ×4/fOSC =<br>65.5ms at fOSC = 4.0MHz |
| Release from<br>LVD detection                | Stop mode is release when release from LVD detection.                                           | (Option read time : about<br>7.2ms)                             |
| External Key-scan<br>Interrupt (PA, PB port) | Stop mode is released by the transition of input at the selected pin by PAST and PBST register. |                                                                 |
| External interrupt                           | Stop mode is release external interrupt input.                                                  | 2 <sup>14</sup> ×4/fOSC = 16.384ms                              |
| WDT Overflow                                 | Stop mode is release by reset or interrupt of WDT.<br>(in RCWDT Mode only)                      | at fOSC = 4.0MHz                                                |
| External Reset                               | Stop mode is release external RESETB pin.                                                       |                                                                 |

# 9. Power-Down Function

### 9.2. Sleep Mode

SLEEP mode can be entered by SLEEP instruction during program. In SLEEP mode, basically CPU and ROM halts while oscillation and peripherals are operate. "NOP" instruction should be follows SLEEP instruction for pre-charge time of Data Bus line.

> ex) SLEEP : SLEEP instruction execution NOP : NOP instruction

#### 9.2.1 Sleep Mode Release

Release of SLEEP mode is executed by Power on reset, all interrupts and Low voltage detection (LVD) mode release. To be release by interrupt, interrupt should be enabled before SLEEP mode. This mode don't need the stabilization oscillation time.

| Release Factor                | Release Method                                                      | Release Time                                                          |
|-------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|
| Power on Reset                | By Power on reset, Sleep mode is release and system is initialized. | $7.2ms + 57 \times 2^{10} \times 4/fOSC =$<br>96.6ms at fOSC = 4.0MHz |
| Release from<br>LVD detection | Sleep mode is release when release from LVD detection.              | (Option read time : about<br>7.2ms)                                   |
| All Interrupts                | Sleep mode is released by all Interrupts.                           | $2^5 \times 4/fOSC = 32us$<br>at fOSC = 4.0MHz                        |
| External Reset                | Sleep mode is release external RESETB pin.                          | Ext. reset pulse width.<br>(longer than 2xTsys)                       |

### 9.3. Operation States in Stop/Sleep Mode

| Internal Circuit        | STOP Mode                                                                                            | SLEEP Mode                                                               |
|-------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Oscillator              | Stop                                                                                                 | Operates continuously                                                    |
| Internal CPU clock      | Stop                                                                                                 | Stop                                                                     |
| Address Bus<br>Data Bus | Retained                                                                                             | Retained                                                                 |
| Registers               | Retained                                                                                             | Retained                                                                 |
| RAM                     | Retained                                                                                             | Retained                                                                 |
| I/O port, Output port   | Retained                                                                                             | Retained                                                                 |
| Timer                   | Stop (Counter clear)                                                                                 | Operates continuously                                                    |
| Watch dog Timer         | Stop (only operate in RCWDT mode)                                                                    | Stop                                                                     |
| ADC                     | Stop                                                                                                 | Stop                                                                     |
| RCWDT                   | Operate continuously (only operate in RCWDT mode)                                                    | not operate                                                              |
| VDI                     | Operates continuously                                                                                | Operates continuously                                                    |
| Release Method          | RESETB, Power-on-reset, Release<br>from LVD, WDT(RCWDT), Ext.<br>Interrupt, Key-input interrupt, VDI | RESETB, Power-on-reset, Release<br>from LVD, All Interrupts (except ADC) |

Table 9.1 Operation States in Stop Mode and Sleep Mode

# 10. RESET Function

### 10.1. Power On RESET

Power On Reset circuit automatically detects the rise of power voltage

(the rising time should be within 50ms). Until the power voltage reaches a certain voltage level, internal reset signal is maintained at "L" Level until oscillator is stable.

After power applies, this reset state is maintained for the configuration option reading time (about 7.2ms at VDD=5.0V) and the oscillation stabilization time. ( $4/fosc \times 57 \times 2^{10}$  = about 58.368ms at 4MHz).





Fig.10.2 Oscillator stabilization diagram



Notice. When Power On Reset, oscillator stabilization time doesn't include OSC. Start time.

# 11. Low Voltage Detection Mode

11.1. Low Voltage Detection Condition

An on board voltage comparator checks that  $V_{DD}$  is at the required level to ensure correct operation of the device.

If  $V_{\text{DD}}$  is below a certain level, Low voltage detector forces the device into low voltage detection mode.

11.2. Low Voltage Detection Mode

There is no power consumption except stop current.

- 1. STOP mode release function is disabled.
- 2. I/O port is configured as input mode (without pull-up resistor).
- 3. Data memory is retained until voltage through external capacitor is worn out.
- 4. Interrupt disabled.
- 5. Oscillator is stop.

### 11.3. Release of Low Voltage Detection Mode

Reset signal result from new battery or any other power (normally 3V/5V) wakes the low voltage detection mode and come into normal reset state. It depends on user whether to execute RAM clear routine or not.

11.4. Low Voltage Detection voltage selection (option)

User can select the voltage of Low Voltage detection voltage level by OTP Configuration Bits (LVDS). One is high voltage version (typ. 2.2V, if LVDS is "0"), another is low voltage version (typ. 1.7V, if LVDS is "1").

# 12. Voltage Detection Indicator Mode

### 12.1. Voltage Detection Indicator Register

Voltage Detection indicator (VDI) are controlled by two registers. It is useful to display the consumption of Batteries.

If VDD power level is low and higher than low voltage detection (LVD) level (refer to Fig.13.1), the bit of VDIR register could be set according to the VDD level sequentially.

The VDD detection levels for Indication are three , that is , VDIR2 (Typ. 4.0V) , VDIR1(Typ. 3.0V) and VDIR0 (Typ. 2.5V) of VDIR register.

|                      | bit    | 3                                          | 2                  | 1      | 0         |                 |
|----------------------|--------|--------------------------------------------|--------------------|--------|-----------|-----------------|
| VDIER                |        | VDIM                                       | VDIER2             | VDIER1 | VDIER0    | 33h             |
| Initial value<br>R/W |        | 0<br>W                                     | 0<br>W             | 0<br>W | 0<br>W    |                 |
|                      | VDIER0 | detection level 0                          |                    | 0      | disable   |                 |
|                      | VDIERU | (typ. 2.5∖                                 | <li>selection</li> | า 1    | enable    |                 |
|                      | VDIER1 | detection level 1<br>(typ. 3.0V) selection |                    | 0      | disable   |                 |
|                      | VUIENI |                                            |                    | า 1    | enable    |                 |
|                      | VDIER2 | detection level 2<br>(typ. 4.0V) selection |                    | 0      | disable   |                 |
|                      | VUIERZ |                                            |                    | า 1    | enable    |                 |
|                      |        | VDI Mode Selection                         |                    | 0      | System    | Reset Selection |
|                      | VDIM   |                                            |                    | 1      | Interrupt | Selection       |

12.1.1. Voltage Detection Indicator Enable Register (VDIER)

Voltage Detection Indicator Enable Register (VDIER) is 4-bit register, and can assign Indicator is enable or not.

If VDIER2 ~ VDIER0 is selected as "0", Voltage detection for Indication function is disabled and if selected as "1", it is enable. If VDIM is selected as "0" and enable one of VDIER2~VDIER0, when the corresponding voltage detection for Indication is occurred, it makes the system reset. If LVIM is selected as "1", it makes the VDI interrupt.

VDIER is write-only register and initialized as ``0 h`` in reset state.

In the in-circuit emulator, VDI function is not implemented and user can not experiment with it. Therefore after final development of user program, this function may be experimented or evaluated.

#### 12.1.2. Voltage Detection Indicator Data Register (VDIR)

| bit                  | 3      | 2      | 1      | 0      |     |
|----------------------|--------|--------|--------|--------|-----|
| VDIR                 | -      | VDIR2  | VDIR1  | VDIR0  | 33h |
| Initial value<br>R/W | 0<br>R | 0<br>R | 0<br>R | 0<br>R |     |

Voltage Detection Indicator Data Register (VDIR) is 3-bit register to store data of low voltage level. VDIR is read only register and initialized as "0h" in reset state.

12. Voltage Detection Indicator Mode

# 12.2. Timming Diagram



# 13. SRAM Data Back-Up

13.1 SRAM DATA BACK-UP after Low Voltage Detection





13.2. S/W flow chart example after Reset using SRAM DATA Back-up





# 14. MTP Programming

## 14.1. MTP Writing Pin Assignments

| SYMBOL | User Mode | EPROM Mode                                   |
|--------|-----------|----------------------------------------------|
| VDD    | Power     | VDD Power (typ. 5V)                          |
| GND    | Ground    | Ground (0V)                                  |
| VPP    | PB1       | Program/Verify Power (typ. 11.5V)            |
| SCK    | PA2       | Serial Clock Input                           |
| SDA    | PA0       | Serial Data Input/Output (Open-Drain Output) |



### 14.2. Configuration Option Bit Description

| Bit         15         14         13         12         11           OPTION         LOCK         SIZE         RST           Initial         1         1         1         1         1         1           R/W         R/W         R/W         R/W         R/W         R/W         R/W           Bit         Name         OTP Code Option         Other         Other         Other | 1<br>/ R/W                            | 9<br>SCS[2:<br>1<br>R/W | 1   | 7<br>LVDS<br>1       | 6<br>RCWS     | 5         | 4        | 3                                          | 2      | 1        | 0     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-----|----------------------|---------------|-----------|----------|--------------------------------------------|--------|----------|-------|
| Initial 1 1 1 1 1<br>R/W R/W R/W R/W R/W R/V                                                                                                                                                                                                                                                                                                                                       | 1<br>/ R/W                            | 1                       | 1   |                      | RCWS          |           |          |                                            |        |          |       |
| R/W R/W R/W R/W R/W R/V                                                                                                                                                                                                                                                                                                                                                            | ' R/W                                 |                         | -   | 1                    | -             |           |          |                                            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                       | R/W                     |     |                      | 1             | 1         | 1        | 1                                          | 1      | 1        | 1     |
| Bit Name OTP Code Optio                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                              |                         | R/W | R/W                  | R/W           | R/W       | R/W      | R/W                                        | R/W    | R/W      | R/W   |
|                                                                                                                                                                                                                                                                                                                                                                                    | n Descrij                             | otion                   |     | С                    | ption V       | alue      |          |                                            | Rema   | arks     |       |
| 15 LOCK LOCK Det                                                                                                                                                                                                                                                                                                                                                                   | inition                               |                         |     | Refer                | to Prog       | rammir    | ng       |                                            |        |          |       |
| 14 (disable or enable re                                                                                                                                                                                                                                                                                                                                                           | e reading user code)                  |                         |     | Specification        |               |           |          | It's set automatically                     |        |          | -     |
| 13 SIZE (BILLING SIZE D                                                                                                                                                                                                                                                                                                                                                            | efinition                             |                         |     | Refer to Programming |               |           | ng       | by our MTP Writer<br>(ADAM OTP Programmer) |        |          |       |
| 12 (2k x 16bit or 1k x 1                                                                                                                                                                                                                                                                                                                                                           |                                       |                         |     |                      | Specification |           |          |                                            |        |          |       |
| 11 RSTS RESETB/PB1                                                                                                                                                                                                                                                                                                                                                                 |                                       |                         |     |                      |               | 1         |          |                                            | RESETB |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                    | 11 RSTS RESETB/PB1 Selection          |                         |     |                      | 0             |           |          | PB1                                        |        |          |       |
| Oscillator Type                                                                                                                                                                                                                                                                                                                                                                    | Oscillator Type Selection             |                         |     |                      |               | OSCS[2:0] |          | PB3/C                                      | SC1    | PB2/     | DSC2  |
| Internal RC                                                                                                                                                                                                                                                                                                                                                                        | Internal RC 4MHz                      |                         |     |                      |               | 111       |          | PB3(I/O) PE                                |        | PB2      | (1/0) |
| Internal RC                                                                                                                                                                                                                                                                                                                                                                        | Internal RC 8MHz                      |                         |     |                      |               | 110       |          |                                            |        | ,        |       |
| Internal RC                                                                                                                                                                                                                                                                                                                                                                        | Internal RC 16MHz                     |                         |     |                      |               | 101       |          |                                            |        |          |       |
| 10:8 OSCS External RC                                                                                                                                                                                                                                                                                                                                                              | External RC Oscillator                |                         |     |                      |               |           |          | OSC1(I)                                    |        | PB2(I/O) |       |
| External Clo                                                                                                                                                                                                                                                                                                                                                                       | External Clock Input<br>XT Oscillator |                         |     | 011                  |               |           |          | $\uparrow$ $\uparrow$                      |        |          |       |
| XT Osci                                                                                                                                                                                                                                                                                                                                                                            |                                       |                         |     | 010                  |               |           |          | OSC1(I) OSC2                               |        | 2(0)     |       |
| LP Osci                                                                                                                                                                                                                                                                                                                                                                            | LP Oscillator                         |                         |     |                      | 001           |           |          | $\uparrow$                                 |        | ,        |       |
| Internal RC                                                                                                                                                                                                                                                                                                                                                                        | Internal RC 1MHz                      |                         |     |                      |               | 000       |          | PB3(I/O) PB2(I/                            |        | (1/0)    |       |
| 7 LVDS LVD Level S                                                                                                                                                                                                                                                                                                                                                                 | 7 LVDS LVD Level Selection            |                         | Ļ   | 1                    |               |           | LVD=1.7V |                                            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                         |     | 0                    |               |           |          | LVD=2.2V                                   |        |          |       |
| 6 RCWS RCWDT Source C                                                                                                                                                                                                                                                                                                                                                              | CWS RCWDT Source Clock Selection      |                         |     | 1                    |               |           |          | Trcwdt = 16us                              |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                    | ACWDT Source Clock Selection          |                         |     |                      | 0             |           |          | 1                                          | RCWDT  | = 8us    |       |

## 15.1. Legend

| A : accumulator(4b | oit) |
|--------------------|------|
|--------------------|------|

- r : peripheral address register(6bit)
- [r]: data addressed by peripheral address register (4bit)
- Y : Y register(4bit)
- X : X register(4bit)
- ABR : address buffer register(15bit)
- ABRn : address buffer register #0~3(4bit)
- [@ABR]: data addressed by ABR(16bit)
- DBR : data buffer register(16bit)
- DBRn : data buffer register #0~3(4bit)
- T0CR : Timer 0 count register(8bit)
- T1CR : Timer 1 count register(8bit)
- #n4 : 0~Fh
- #n2 : 0~3
- #n1 : 0~1
- dp : data address point(8bit)
- dp+X+Y: data address point indexed by X-register and Y-register (8bit)
- PG : page address(1bit)
- ADS : address stack register
- !abs : address

## 15.2. Instruction Set Table

| NO | INSTRUCTION<br>GROUP  | MNEMONIC | USAGE          | OPERATION                                                                                       | s | СҮ |  |  |  |  |  |  |               |                                                                                            |   |
|----|-----------------------|----------|----------------|-------------------------------------------------------------------------------------------------|---|----|--|--|--|--|--|--|---------------|--------------------------------------------------------------------------------------------|---|
| 1  |                       |          | ADDC m(dp),#n4 | A = m(dp)+#n4+CY<br>A = m(dp+X+Y)+#n4+CY at D flag of SFR is set.<br>"S" set if overflow.       | с | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 2  | 1                     |          | ADDC A,#n4     | A = A+#n4+CY, "S" set if overflow                                                               | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 3  | -                     |          | ADDC m(dp), A  | A = m(dp) +A+CY,<br>A = m(dp+X+Y) +A+CY at D flag of SFR is set.<br>"S" set if overflow         | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 4  |                       | ADDC     | ADDC ABRn,#n4  | ABRn = ABRn + #n4+CY, "S" set if overflow                                                       | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 5  |                       | ADDC     | ADDC ABRn,A    | ABRn = ABRn + A+CY, "S" set if overflow                                                         | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 6  |                       |          | ADDC ABRn,Y    | ABRn = ABRn + Y+CY, "S" set if overflow                                                         | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 7  |                       |          | ADDC DBRn,#n4  | DBRn = DBRn + #n4+CY, "S" set if overflow                                                       | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 8  |                       |          | ADDC DBRn,A    | DBRn = DBRn + A+CY, "S" set if overflow                                                         | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 9  |                       |          | ADDC DBRn,Y    | DBRn = DBRn + Y+CY, "S" set if overflow                                                         | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 10 |                       |          | ADDC Y,#n4     | Y = Y + #n4 + CY, "S" set if overflow                                                           |   | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 11 | Arithmetic<br>& Logic |          | ADDC X,#n4     | X = X + #n4 + CY, "S" set if overflow                                                           | С | 0  |  |  |  |  |  |  |               |                                                                                            |   |
| 12 |                       |          | SUBC m(dp),#n4 | A = m(dp) - #n4-CY,<br>A = m(dp+X+Y)- #n4-CY at D flag of SFR is set.<br>"S" clear if underflow | в | w  |  |  |  |  |  |  |               |                                                                                            |   |
| 13 |                       |          | SUBC A,#n4     | A = A - #n4-CY, "S" clear if underflow                                                          | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 14 |                       |          |                |                                                                                                 |   |    |  |  |  |  |  |  | SUBC m(dp), A | A = m(dp) - A-CY,<br>A = m(dp+X+Y)-A-CY at D flag of SFR is set.<br>"S" clear if underflow | В |
| 15 |                       | SUBC     | SUBC ABRn, #n4 | ABRn = ABRn - #n4-CY, "S" clear if underflow                                                    | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 16 | 1                     | SUBC     | SUBC ABRn, A   | ABRn = ABRn – A-CY, "S" clear if underflow                                                      | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 17 |                       |          | SUBC ABRn, Y   | ABRn = ABRn – Y-CY, "S" clear if underflow                                                      | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 18 |                       |          | SUBC DBRn, #n4 | DBRn = DBRn - #n4-CY, "S" clear if underflow                                                    | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 19 |                       |          | SUBC DBRn, A   | DBRn = DBRn - A-CY, "S" clear if underflow                                                      | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 20 |                       |          | SUBC DBRn, Y   | DBRn = DBRn - Y-CY, "S" clear if underflow                                                      | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 21 |                       |          | SUBC Y, #n4    | Y = Y- #n4-CY, "S" clear if underflow                                                           | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 22 |                       |          | SUBC X, #n4    | X = X- #n4-CY, "S" clear if underflow                                                           | В | W  |  |  |  |  |  |  |               |                                                                                            |   |
| 23 |                       | ARRC     | ARRC           | A = A rotate right with CY                                                                      | Т | R  |  |  |  |  |  |  |               |                                                                                            |   |
| 24 |                       | ARLC     | ARLC           | A = A rotate left with CY                                                                       | Т | R  |  |  |  |  |  |  |               |                                                                                            |   |
| 25 |                       | CMPL     | CMPL           | $A = \overline{A} + 1$                                                                          | Z |    |  |  |  |  |  |  |               |                                                                                            |   |
| 26 |                       | XOR      | XOR m(dp)      | $A = A \bigoplus m(dp)$ ,<br>$A = A \bigoplus m(dp+X+Y)$ at D flag of SFR is set                | S |    |  |  |  |  |  |  |               |                                                                                            |   |
| 27 |                       | AND      | AND m(dp)      | $A = A \land m(dp)$ ,<br>$A = A \land m(dp+X+Y)$ at D flag of SFR is set                        | S |    |  |  |  |  |  |  |               |                                                                                            |   |
| 28 |                       | OR       | OR m(dp)       | A = A v m(dp),<br>A = A v m(dp+X+Y) at D flag of SFR is set                                     | S |    |  |  |  |  |  |  |               |                                                                                            |   |

| NO | INSTRUCTION<br>GROUP  | MNEMONIC | USAGE          | OPERATION                                                                         | s | СҮ       |
|----|-----------------------|----------|----------------|-----------------------------------------------------------------------------------|---|----------|
| 29 |                       |          | CALE #n4       | "S" set if A <= #n4                                                               | Е |          |
| 30 |                       | CALE     | CALE m(dp)     | "S" set if A <= m(dp),<br>"S" set if A <= m(dp+X+Y) at D flag of SFR is set.      | Е |          |
| 31 |                       | CAGE     | CAGE #n4       | "S" set if A >= #n4                                                               | Е |          |
| 32 |                       |          | CANE #n4       | "S" set if A != #n4                                                               | Ν |          |
| 33 | Compare               | CANE     | CANE m(dp)     | "S" set if A != m(dp),<br>"S" set if A != m(dp+X+Y) at D flag of SFR is set.      | N |          |
| 34 |                       | CMLE     | CMLE m(dp),#n4 | "S" set if m(dp) <= #n4,<br>"S" set if m(dp+X+Y) <= #n4 at D flag of SFR is set.  | E |          |
| 35 |                       | CMNE     | CMNE m(dp),#n4 | "S" set if m(dp) != #n4,<br>"S" set if m(dp+X+Y) = #n4 at D flag of SFR is set.   | N |          |
| 36 |                       | CYGE     | CYGE #n4       | "S" set if Y >= #n4                                                               | Е |          |
| 37 |                       | CVNE     | CYNE #n4       | "S" set if Y != #n4                                                               | Ν |          |
| 38 |                       | CYNE     | CYNE A         | "S" set if Y != A                                                                 | Ν |          |
| 39 |                       | CXGE     | CXGE #n4       | "S" set if X >= #n4                                                               | Е |          |
| 40 |                       | CXNE     | CXNE #n4       | "S" set if X != #n4                                                               | Ν |          |
| 41 |                       | SET1     | SET1 m(dp).#n2 | Set bit m(dp).#n2,<br>Set bit m(dp+X+Y).#n2 at D flag of SFR is set.              | s |          |
| 42 |                       | CLR1     | CLR1 m(dp).#n2 | Clear bit m(dp).#n2,<br>Clear bit m(dp+X+Y).#n2 at D flag of SFR is set.          | s |          |
| 43 | Bit<br>Manipulation   | ТМ       | TM m(dp).#n2   | "S" set if m(dp) Bit = 1<br>"S" set if m(dp+X+Y) Bit = 1 at D flag of SFR is set. | Е |          |
| 44 |                       | SETR1    | SETR1 r. #n2   | Set bit [r]. #n2                                                                  | S |          |
| 45 |                       | CLRR1    | CLRR1 r. #n2   | Clear bit [r]. #n2                                                                | S |          |
| 46 |                       | TSTR     | TSTR r. #n2    | "S" set if [r]. #n2 Bit = 1                                                       | Е |          |
| 47 |                       | NOTA1    | NOTA1 #n2      | A.#n2 ← ~ (A.#n2)                                                                 | S |          |
| 48 |                       | CLRC     | CLRC           | Carry Bit of SFR is clear.                                                        | S | 0        |
| 49 |                       | SETC     | SETC           | Carry Bit of SFR is set.                                                          | S | 1        |
| 50 | Carry<br>Manipulation | TSTC     | TSTC           | "S" set if Carry Test = 1.                                                        | Е |          |
| 51 |                       | LDC      | LDC r.#n2      | CY ← [r].#n2                                                                      | S |          |
| 52 |                       | STC      | STC r.#n2      | [r].#n2 ← CY                                                                      | S |          |
| 53 |                       | LDM      | LDM m(dp),#n4  | m(dp) = #n4<br>m(dp+X+Y) = #n4 at D flag of SFR is set.                           | S |          |
| 54 | DATA<br>Transfer      |          | LDM m(dp), A   | $m(dp) \leftarrow A$<br>$m(dp+X+Y) \leftarrow A$ at D flag of SFR is set.         | s |          |
| 55 | 110115161             |          | LDA #n4        | A = #n4                                                                           | S | <u> </u> |
| 56 |                       | LDA      | LDA m(dp)      | $A \leftarrow m(dp)$<br>$A \leftarrow m(dp+X+Y)$ at D flag of SFR is set.         | S |          |

| NO | INSTRUCTION<br>GROUP | MNEMONIC | USAGE        | OPERATION                                                                                                                                                | s | СҮ |
|----|----------------------|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 57 |                      |          | LDA X        | $A \leftarrow X$                                                                                                                                         | S |    |
| 58 |                      | LDA      | LDA Y        | $A \leftarrow Y$                                                                                                                                         | S |    |
| 59 |                      |          | LDY #n4      | Y = #n4                                                                                                                                                  | S |    |
| 60 |                      | LDY      | LDY A        | $Y \leftarrow A$                                                                                                                                         | S |    |
| 61 |                      |          | LDX #n4      | X = #n4                                                                                                                                                  | S |    |
| 62 |                      | LDX      | LDX A        | $X \leftarrow A$                                                                                                                                         | S |    |
| 63 |                      | XMA      | XMA m(dp)    | A <=> m(dp)<br>A <=> m (dp+X+Y) at D flag of SFR is set.                                                                                                 | s |    |
| 64 | DATA<br>Transfer     |          | LDW @ABR     | DBR ← (@ABR) **[Note]                                                                                                                                    | S |    |
| 65 | Transier             |          | LDW DBR,ABR  | $DBR \leftarrow ABR$                                                                                                                                     | S |    |
| 66 |                      | LDW      | LDW ABR,DBR  | $ABR \leftarrow DBR$                                                                                                                                     | S |    |
| 67 |                      |          | LDW DBR,T0CR | DBR1,DBR0 ← T0CR                                                                                                                                         | S |    |
| 68 |                      |          | LDW DBR,T1CR | DBR3,DBR2 ← T1CR                                                                                                                                         | S |    |
| 69 |                      | LPG      | LPG #n1      | PG = #n1                                                                                                                                                 | S |    |
| 70 |                      | LRA      | LRA r        | [r] ← A                                                                                                                                                  | S |    |
| 71 |                      | LAR      | LAR r        | $A \leftarrow [r]$                                                                                                                                       | S |    |
| 72 |                      | LRI      | LRI r,#n4    | [r] = #n4                                                                                                                                                | S |    |
| 73 | Increment            | INC      | INC ABR      | ABR++                                                                                                                                                    | - |    |
| 74 | Branch               | BR       | BR !abs      | If S bit of SFR =1 , Absolute branch, PC<br>← !abs                                                                                                       | S |    |
| 75 |                      |          | BR @ABR      | If S bit of SFR =1 , Indirect branch PG+PC $\leftarrow$ ABR                                                                                              | S |    |
| 76 |                      | CALL     | CALL !abs    | If S bit of SFR =1 ,<br>ADS $\leftarrow$ PG + PC, SP $\leftarrow$ SP – 1 , PC $\leftarrow$ !abs                                                          | S |    |
| 77 | Subroutine           | CALL     | CALL @ABR    | If S bit of SFR =1 ,<br>ADS $\leftarrow$ PG + PC, SP $\leftarrow$ SP – 1 , PG+PC $\leftarrow$ ABR                                                        | S |    |
| 78 |                      | RET      | RET          | $SP \leftarrow SP + 1, PG + PC \leftarrow ADS$                                                                                                           | S |    |
| 79 |                      | RETI     | RETI         | $\begin{array}{rcl} SPSFR \ \leftarrow \ SPSFR + 1, \ SFR \ \leftarrow \ M(SPSFR) \\ SP \ \leftarrow \ SP + 1, \ PG + PC \ \leftarrow \ ADS \end{array}$ | s |    |
| 80 |                      | NOP      | NOP          |                                                                                                                                                          | S |    |
| 81 |                      | STOP     | STOP         |                                                                                                                                                          | S |    |
| 82 |                      | SLEEP    | SLEEP        |                                                                                                                                                          | S |    |
| 83 | 1                    | WDTC     | WDTC         | Watchdog Timer Clear                                                                                                                                     | S |    |
| 84 | Etc                  | SPC      | SPC          | Stack Pointer Clear                                                                                                                                      | S |    |
| 85 |                      | EIX      | EIX          | Index bit of SFR is set                                                                                                                                  | S |    |
| 86 |                      | DIX      | DIX          | Index bit of SFR is clear                                                                                                                                | S |    |
| 87 |                      | EI       | EI           | Interrupt bit of SFR is set                                                                                                                              | S |    |
| 88 |                      | DI       | DI           | Interrupt bit of SFR is clear                                                                                                                            | S |    |

\*\*[Note] The Instruction "LDW @ABR" execution time is 2cycle and execution process is as follow. SP = SP-1 , ADS← PG+PC ,

 $PG+PC \leftarrow ABR, DBR \leftarrow (PG+PC), PG+PC \leftarrow ADS, SP = SP+1$ 

\*\* CARRY BIT(CY) hold previous value before execution CLRC/SETC instruction .

Symbols have meaning as follows.

- O : Carry bit is only set when overflow has occurred in operation.
- W: Carry bit is only set when borrow has occurred in operation.
- R : Carry bit is only set or reset according to shift bit.
- \*\* STATUS BIT(S) indicates conditions for changing status. Symbols have meaning as follows.
  - S: On executing an instruction, status bit is unconditionally set.
  - C  $\,:\,$  Status bit is only set when overflow has occurred in operation.
  - ${\sf B}\,$  : Status bit is only set when underflow has not occurred in operation.
  - E : Status bit is only set when equality is found in comparison.
  - N: Status bit is only set when equality is not found in comparison.
  - Z: Status bit only set when the result is zero.
  - T: Status bit only set when the carry has occurred in operation.